Vol. 32, issue 02, article # 5

Geints Yu.E., Zemlyanov A.A., Minina O.V. Simulation of self-focusing of femtosecond laser pulses in air by the method of diffraction beams and light tubes. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 120–130 [in Russian].
Copy the reference to clipboard
Abstract:

The results of a theoretical investigation of the propagation of femtosecond pulses of a Ti:Sapphire laser in air during the self-focusing and filamentation are presented. The analysis of self-focusing of laser pulses was carried out on the basis of the method of diffraction beams and light tubes, which made it possible to establish that specific light structures are formed in the laser beam during self-focusing. One of such structures is the energy-replenishing diffraction-beam tube, which provides necessary energy for filamentation, and at the stage of post-filamentation pulse propagation exists in the form of a separate intense light channel. The dependences of the radius and power of the energy-replenishing tube on the initial beam radius and the peak power for a fixed pulse duration are established. It was revealed that the energy consumption of radiation per filamentation decreases with an increase in the beam radius and a decrease in its initial power. The peak power contained in the energy-replenishing light tube at the post-filamentation propagation stage of laser pulses does not exceed the critical self-focusing power for the Gaussian beam and weakly depends on the initial parameters of the pulse.

Keywords:

femtosecond laser pulses, self-focusing, filamentation, diffraction-beam tube, energy-replenishing tube, post-filamentation light channel

References:

    1.    Askar'yan G.A. Vozdejstvie gradienta polya intensivnogo elektromagnitnogo lucha na elektrony i atomy // ZHETF. 1962. V. 42, N 6. P. 1567–1570.
   2. Chekalin S.V., Kandidov V.P. Ot samofokusirovki svetovyh puchkov – k filamentatsii lazernyh impul'sov // Uspekhi fiz. nauk. 2013. V. 183, iss. 2. P. 133–152.
   3. Wolf J.P. Short-pulse lasers for weather control // Reports on Progress Phys. 2018. V. 81. N 2. P. 026001.
   4. Laser filamentation: Mathematical methods and models / A.D. Bandrauk, E. Lorin, J.V. Moloney (eds.). Switzerland: Springer, 2016. 216 p.
   5. Apeksimov D.V., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K.. Filamentatsiya femtosekundnyh lazernyh impul'sov v vozduhe / pod ob. red. d.m.-m.n. A.A. Zemlyanova. Tomsk: Izd-vo IOA SO RAN, 2017. 162 p.
   6. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E. Difraktsionnaya optika svetovogo filamenta, obrazovannogo pri samofokusirovke femtosekundnogo lazernogo impul'sa v vozduhe // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 839–847; Zemlyanov А.А., Bulygin А.D., Geints Yu.E. Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air // Atmos. Ocean. Opt. 2012. V. 25, N 2. P. 97–105.
   7. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E. Energeticheskie svetovye struktury pri filamentatsii femtosekundnogo lazernogo izlucheniya v vozduhe. K 50-letiyu pervoj publikatsii o samofokusirovke sveta // Optika atmosf. i okeana. 2013. V. 26. N 5. P. 350–362; Zemlyanov А.А., Bulygin А.D., Geints Yu.E. Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 463–474.
   8. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E., Minina O.V. Dinamika svetovyh struktur pri filamentatsii ul'trakorotkih lazernyh impul'sov v vozduhe // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 359–368; Zemlyanov А.А., Bulygin А.D., Geints Yu.E., Mininа О.V. Dynamics of light structures during filamentation of femtosecond laser pulses in air // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 395–403.
   9. Гейнц Ю.Э., Землянов А.А., Минина О.В. Дифракционно-лучевая оптика филаментации: I. Формализм дифракционных лучей и световых трубок // Оптика атмосф. и океана. 2018. V. 31, N 5. P. 364–371; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: I. Formalism of diffraction beams and light tubes // Atmos. Ocean. Opt. 2018. V. 31, N 6. Р. 611–618.
10. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: II. Difraktsionno-luchevaya kartina filamentatsii lazernogo impul'sa // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 515–522; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: II. Diffraction-beam pattern of laser pulse filamentation // Atmos. Ocean. Opt. 2018. V. 31, N 6. Р. 619–625.
11. Boyd R.W., Lukishova S.G., Shen Y.R. Self-focusing: Past and present. Fundamentals and prospects // Top. Appl. Phys. Berlin: Springer, 2008. N 114. 605 р.
12. Kosareva O.G., Kandidov V.P., Brodeur A., Chin S. From filamentation in condensed media to filamentation in gases // J. Nonlinear Opt. Phys. Mater. 1997. V. 6, N 4. P. 485–494.
13. Ciao R.Y., Garmire E., Townes C.H. Self-Trapping of Optical Beams // Phys. Rev. Let. 1964. V. 13, N 15. P. 479–482.
14. Liu W., Gravel J.-F., Theberge F., Becker A., Chin S.L. Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air // Appl. Phys. B. 2005. V. 80, N 7. P. 857–860.
15. Zuoqiang Hao, Jie Zhang, Xin Lu, Tingting Xi, Zhe Zhang, Zhaohua Wang. Energy interchange between large-scale free propagating filaments and its background reservoir // Opt. Soc. Am. B. 2009. V. 26, N 3. P. 499–502.
16. Talanov V.I. Avtomodel'nye volnovye puchki v nelinejnom dielektrike // Izv. vuzov. Radiofiz. 1966. V. 9, N 2. P. 410–412.
17. Zel'dovich Ya.B., Rajzer Yu.P. Fizika udarnyh voln i vysokotemperaturnyh gidrodinamicheskih yavlenij. M.: Fizmatgiz, 1966. 688 p.
18. Vlasov S.H., Piskunova L.V., Talanov V.I. Struktura polya vblizi osobennosti, voznikayushchej pri samofokusirovke v kubichnoj srede // ZHETF. 1978. V. 75, N 5. P. 1602–1609.
19. Gorbushina T.A., Degtyarev L.M., Krylov V.V. Metod chislennogo resheniya zadach dinamiki volnovyh polej s osobennostyami // Preprint IPM. 1976. N 51. 17 p.
20. Petrishchev V.A., Talanov V.I. O nestatsionarnoj samofokusirovke sveta // Kvant. elektron. 1971. N 6. P. 35–42.
21. Marburger J.H. Self-focusing: Theory // Prog. Quantum. Electron. 1975. V. 4. Part. 1. P. 35–110.
22. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Mnozhestvennaya filamentatsiya lazernyh puchkov razlichnogo diametra v vozduhe na trasse dlinoj 150 m // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 51–55; Apeksimov D.V., Zemlyanov А.А., Iglakovа А.N., Kаbаnov А.М., Kuchinskaya О.I., Маtvienkо G.G., Оshlakov V.K., Petrov А.V. Multiple filamentation of laser beams of different diameters in air along a 150-meter path // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 263–266.
23. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Global'naya samofokusirovka i osobennosti mnozhestvennoj filamentatsii izlucheniya subteravattnogo titan-sapfirovogo lazera s santimetrovym diametrom vyhodnoj apertury na 150-metrovoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 727–732; Apeksimov D.V., Zemlyanov А.А., Iglakovа А.N., Kаbаnov А.М., Kuchinskaya О.I., Маtvienkо G.G., Оshlakov V.K., Petrov А.V. Global self-focusing and features of multiple filamentation of radiation of a subterawatt Ti:Sapphire laser with a centimeter output aperture along a 150-m path // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 31–35.
24. Mechain G., Couairon A., Andre Y.-B., D'Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long range self-channeling of Infrared laser pulses in air: A new propagation regime without ionization // Appl. Phys. B. 2004. V. 79, N 3. Р. 379–382.
25. Mechain G., D'Amico C., Andre Y.-B., Tzortzakis S., Franco M., Prade B., Mysyrowicz A., Couairon A., Salmon E., Sauerbrey R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser // Opt. Commun. 2005. V. 247. P. 171–180.
26. Daigle J.-F., Kosareva O.G., Panov N.A., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284, N 14. Р. 3601–3606.
27. Liu W., Gravel J.-F., Theberge F., Becker A., Chin S.L. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air // Appl. Phys. B. 2005. V. 80, N 7. P. 857–860.
28. Perelomov A.M., Popov V.S., Terent'ev M.V. Ionizatsiya atomov v peremennom elektricheskom pole // ZHETF. 1966. V. 50. P. 1393–1397.
29. Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G. Nelinejnaya femtosekundnaya optika atmosfery. Tomsk: Izd-vo IOA SO RAN, 2010. 212 p.
 

Back