Vol. 32, issue 02, article # 4

Geints Yu.E., Panina E.K., Zemlyanov A.A. Collective effects in the formation of an ensemble of photonic nanojets by an ordered microassembly of dielectric microparticles. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 113–119 [in Russian].
Copy the reference to clipboard
Abstract:

The results of theoretical studies of spatially localized near-field light structures (photonic nanojets) that are formed when laser radiation is scattered on a meta-surface in the form of a single-layer ordered assembly of dielectric microparticles (spheres, cones) embedded in a transparent matrix (silicone film) are presented. By solving Maxwell's equations by the method of computational electrodynamics (FDTD), a detailed analysis of the main parameters of localized light structures (length, width, peak intensity) under the influence of the light fields of neighboring microparticles was carried out. It has been established that the main factors influencing the characteristics of the photon nanojet under study are the spatial orientation of the microcones, as well as the depth of their immersion into the silicone matrix. It is shown that a number of spatial configurations of conic microassemblies allow the creation of an ensemble of photon nanojet with specific characteristics unattainable for isolated microcones. Ordered clusters of spherical particles have an advantage in terms of a comprehensive assessment of the parameters of photonic nanojets.

Keywords:

photonic nanojet, microassembly of particles, dielectric microparticles

References:

    1.    Allen K.W., Astratov V.N., Farahi N., Li Y. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis // Ann. Phys. 2015. V. 527, N 7–8. P. 513–522.
   2. Wu W., Katsnelson A., Memis O.G., Hooman M. A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars // Nanotechnology. 2007. V. 18. DOI: 10.1088/0957-4484/18/48/485302.
   3. Ghenuche P., De Torres J., Ferrand P., Wenger J. Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays // Appl. Phys. Lett. 2014. V. 105. 131102.
   4. Mendes M.J., Araújo A., Vicente A., Águas H., Ferreira I., Fortunato E., Martins R. Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells // Nano Energy. 2016. V. 26. P. 286–296.
   5. Li X., Chen Z., Taflove A., Backman V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets // Opt. Express. 2005. V. 13, N 2. P. 526–533.
   6. Kim M.-S., Scharf T., Mühlig S., Rockstuhl C., Herzig H.P. Engineering photonic nanojets // Opt. Express. 2011. V. 19, N 11. P. 10206–10220.
   7. Chen Z., Taflove A., Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique // Opt. Express. 2004. V. 12, N 7. P. 1214–1220.
   8. McCloskey D., Wang J.J., Donegan J.F. Low divergence photonic nanojets from Si3N4 microdisks // Opt. Express. 2012. V. 20, N 1. P. 128–140.
   9. Liberale C., Mohanty S.K., Mohanty K.S., Degiorgioa V., Cabrinid S., Carpentierod A., Ferrarid E., Cojoc D., Fabrizio E.D. Proc. SPIE Int. Soc. Opt. Eng. 2006. V. 6095. DOI: 10.1117/12.647277.
10. Geints Yu.E., Minin I.V., Panina E.K., Zemlyanov А.А., Minin О.V. Comparison of photonic nanojets key parameters produced by nonspherical microparticles // Opt. Quant. Electron. 2017. V. 49, N 3. DOI: 10.1007/s11082-017-0958-y.
11. Pikulin A., Afanasiev A., Agareva N., Alexandrov A.P., Bredikhin V., Bityurin N. Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres // Opt. Express. 2012. V. 20, N 8. P. 9052–9057.
12. Arnold N. Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres // Appl. Phys. A. 2008. V. 92, N 4. P. 1005–1012.
13. Wang Z.B., Guo W., Luk'yanchuk B., Whitehead D.J., Li L., Liu Z. Optical near-field interaction between neighbouring micro/nano-particles // J. Laser Micro Nanoeng. 2008. V. 3, N 1. P. 14–18.
14. Bityurin N., Afanasiev A., Bredikhin V., Alexandrov A., Agareva N., Pikulin A., Ilyakov I., Shishkin В., Akhmedzhanov R. Colloidal particle lens arrays-assisted nano-patterning by harmonics of a femtosecond laser // Opt. Exp. 2013. V. 21, N 18. P. 21485–21490.
15. Rizzato S., Primiceri E., Monteduro A.G., Colombelli A., Leo A., Manera M.G., Rella R., Maruccio G. Interaction-tailored organization of large-area colloidal assemblies // Beilstein J. Nanotechnol. 2018. V. 9. P. 1582–1593.
16. Geints Yu.E., Panina E.K., Zemlyanov A.A. Control over parameters of photon nanojets of dielectric microsphere // Opt. Commun. 2010. V. 283. P. 4775–4781.
17. Gejnts Yu.E., Zemlyanov A.A., Panina E.K. «Fotonnye strui» ot dielektricheskih mikroaksikonov // Kvant. elektron. 2015. V. 45, N 8. P. 743–747.
18. Boren K., Hafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 662 p.
19. Gejnts Yu.E., Zemlyanov A.A., Panina E.K. Effekt «fotonnoj nanostrui» v mnogoslojnyh mikronnyh sfericheskih chastitsah // Kvant. elektron. 2011. V. 41, N 6. P. 520–525.
 

Back