Vol. 32, issue 01, article # 8

Starchenko A.V., Kuzhevskaya I.V., Kizhner L.I., Barashkova N.K., Volkova M.A., Bart A.A. Evalution of the TSUNM3 high-resolution mesoscale NWP model. // Optika Atmosfery i Okeana. 2019. V. 32. No. 01. P. 57-61 [in Russian].
Copy the reference to clipboard
Abstract:

The results of the forecast verification of the high-resolution mesoscale model TSUNM3 created at Tomsk State University are presented. The model is intended for forecasting weather elements at the surface and in the atmosphere boundary layer and is used in scientific researches to predict the state of the atmosphere in the Tomsk region up to an altitude of 2.5 km with a lead time of up to 40 hours. It has a higher spatial resolution (1 km) than the model COSMO-Ru14-Sib technology operatively functioning in the Siberian region (grid spacing is 13.2 km). The forecast quality of the temperature-humidity and dynamic characteristics of the atmosphere state by the TSUNM3 model is comparable to the quality of existing operational mesoscale models.

Keywords:

high resolution numerical weather prediction model TSUNM3, weather conditions, forecast verification, forecast quality characteristics

References:

   1.  Du Y., Rotunno R., Zhang Q. WRF analysis of WRF-simulated diurnal boundary layer winds in eastern China using a simple 1D model // J. Atmos. Sci. 2015. V. 72. P. 714–727. DOI: 10.1175/JAS-D-14-0186.1.
   2.  Clark A.J., Coniglio M.C., Coffer B.E., Thompson G., Xue M., Kong F. Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF model simulations // Weather Forecast. 2015. V. 30, N 3. P. 613–638. DOI: 10.1175/WAF-D-14-00078.1.
   3.  Coniglio M.C., Elmore K.L., Kain J.S., Weiss S.J., Xue M., Weisman M.L. Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA hazardous weather tested spring experiment // Weather Forecast. 2010. V. 25. P. 408–427. DOI: 0.1175/2009WAF2222258.1.
   4.  Kalinin N.A., Vetrov A.L., Sviyazov E.M., Popova E.V. Izuchenie intensivnoy konvektsii v Permskom krae s pomoshch'yu modeli WRF // Meteorol. i gidrol. 2013. N 9. P. 21–30.
   5.  Shikhov A.N., Bykov A.V. Otsenka kachestva prognoza mezomasshabnykh konvektivnykh sistem na Zapadnom Urale s pomoshch'yu modeli WRF i sputnikovykh dannykh MODIS // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. V. 13, N 1. P. 137–148.
   6.  Romanskiy S.O., Verbitskaya E.M. Kratkosrochnyy chislennyy prognoz pogody vysokogo prostranstvennogo razresheniya po Vladivostoku na baze modeli WRF–ARW // Vestn. DVO RAN. 2014. N 5. P. 48–57.
   7.  National Meteorological Center of CMA [Electronic resource]. URL: http://eng.nmc.cn/publish/area/china/hws.html (last access: 15.03.2018).
   8.  Baldauf M., Seifert A., Forstner J., Majewski D., Raschendorfer M., Reinhardt T. Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities // Mon. Weather Rev. 2011. V. 139. P. 3887–3905.
   9.  Rivin G.S., Rozinkina I.A., Vil'fand R.M., Alferov D.YU., Astakhova E.D., Blinov D.V., Bundel' A.Yu., Kazakova E.V., Kirsanov A.A., Nikitin M.A., Perov V.L., Surkova G.V., Revokatova A.P., Shatunova M.V., Chumakov M.M. Sistema COSMO-Ru negidrostaticheskogo mezomasshtabnogo kratkosrochnogo prognoza pogody Gidromettsentra Rossii: vtoroy etap realizatsii i razvitiya // Meteorol. i gidrol. 2015. N 6. P. 58–71.
10.  Rivin G.S., Rozinkina I.A., Bagrov A.N., Blinov D.V., Kirsanov A.A., Kuz'mina E.V., Shatunova M.V., Chumakov M.M., Alferov D.Yu., Bundel' A.Yu., Zaychenko M.Yu., Nikitin M.A. Mezomasshtabnaya model' COSMO-Ru2 i rezul'taty ee operativnykh ispytaniy // Inform. sb. N 44. Rezul'taty ispytaniya novykh i usovershenstvovannykh tekhnologiy, modeley i metodov gidrometeorologicheskikh prognozov. Moskva; Obninsk: IG-SOTSIN, 2017. P. 25–55.
11.  Starchenko A.V., Bart A.A, Kizhner L.I., Barashkova N.K., Volkova M.A., Zhuravlev G.G., Kuzhevskaya I.V., Terenteva M.V. Analysis of observations and results of numerical modeling of meteorological parameters and atmospheric air pollution under weak wind conditions in the city of Tomsk // Proc. SPIE. 2015. V. 9680. P. 96806Z-1–96806Z-7.
12.  Volkova M.A., Starchenko A.V., Kuzhevskaya I.V., Bart A.A., Kizhner L.I., Barashkova N.K. Forecast of icing zones using possibilities of hydrodynamic simulation for the atmospheric boundary layer // Proc. SPIE. 2016. V. 10035. P. 1003567-1–1003567-7.
13.  Gorbatenko V.P., Starchenko A.V. Mezomasshtabnoe modelirovanie atmosfernykh protsessov na superkomp'yutere TGU SKIF CYBERIA // Marchukovskie nauchnye chteniya – 2017: sb. tr. mezhdunar. nauch. konf. Novosibirsk: In-t vychislit. matematiki i matem. geofiziki SO RAN, 2017. P. 224–229.
14.  Tolstykh M.A. Semi-Lagrangian high-resolution atmospheric model for numerical weather prediction // Russ. Meteorol. Hydrol. 2001. N 4. P. 1–9.
15.  Starchenko A.V., Bart A.A., Bogoslovskiy N.N., Danilkin E.A., Terenteva M.A. Mathematical modelling of atmospheric processes above an industrial centre // Proc. SPIE. 2014. V. 9292. P. 929249-1–929249-9.
16.  Penenko V.V., Aloyan A.E. Modeli i metody dlya zadach okhrany okruzhayushchey sredy. M.: Nauka, 1985. 256 p.
17.  Kunz R., Moussiopoulos N. Simulation of the wind field in Athens using refined boundary conditions // Atmos. Environ. 1995. V. 29, N 24. P. 3575–3591.
18.  Carpenter K. Note on the Paper “Radiation Condition for the Lateral Boundaries of Limited-Area Numerical Models” by M. Miller, A. Thorpe (QJ., 107, 615–628) // J. Roy. Meteorol. Soc. 1982. V. 108. Р. 717–719.
19. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesey / pod red. F.T.M. N'istadta, KH. van Dopa. L.: Gidrometeoizdat, 1985. 351 p.
20. Avissar R., Mahrer Y. Mapping frost-sensitive areas with a three-dimen­sional local-scale numerical model. Part I. Physical and numerical aspects // J. Appl. Meteorol. 1988. V. 27. Р. 400–413.
21. Stephens G. Radiation profiles in extended water clouds. Part II: Parameterization schemes // J. Atmos. Sci. 1978. V. 35. Р. 2123–2132.
22. Kessler E. On the distribution and continuity of water substance in atmospheric circulation. Meteorology monograph // Bull. Am. Meteorol. Soc. 1969. N 32. Р. 84–112.
23. Starchenko A.V. Modelirovanie perenosa primesi v odnorodnom atmosfernom pogranichnom sloe // Materialy mezhdunar. konf. ENVIROMIS 2000. Tomsk: Izd-vo Tomskogo TSNTI, 2000. P. 77–82.
24. Arshinov M.Yu., Belan B.D., Davydov D.K., Inouye G., Krasnov O.A., Machida T., Maksyutov Sh., Nedelek F., Ramonet M., Sias F., Tolmachev G.N., Fofonov A.V. Organizatsiya monitoringa parnikovykh i okislyayushchikh atmosferu komponent nad territoriey Sibiri i nekotorye ego rezul'taty. 1. Gazovyy sostav // Optika atmosf. i okeana. 2006. V. 19, N 11. P. 948–955.
25. Provedenie proizvodstvennykh (operativnykh) ispytaniy novykh i usovershenstvovannykh metodov gidrometeorologicheskikh i geliogeofizicheskikh prognozov: RD 52.27.284-91: metod. ukazaniya. M., 1991. 150 p.
26. Nastavlenie po kratkosrochnym prognozam pogody obshchego naznacheniya: RD 52.27.724-2009. Moskva, Obninsk: IG-SOTSIN, 2009. 50 p.
27. Tolstykh M.A., Shashkin V.V., Fadeev R.Yu., Shlyaeva A.V., Mizyak V.G., Rogutov V.S., Bogoslovskiy N.N., Goyman G.S., Makhnorylova S.V., Yurova A.Yu. Sistema modelirovaniya atmosfery dlya besshovnogo prognoza. M.: TRIADA LTD, 2017. 166 p.
28. Shakina N.P., Ivanova A.R. Prognozirovanie meteorologicheskikh usloviy dlya aviatsii. M., 2016. 255 p.
29. Bundel' A.Yu., Kirsanov A.A., Murav'ev A.V., Rivin G.S., Rozinkina I.A., Blinov D.V. Pervye rezul'taty otsenki uspeshnosti mezomasshtabnykh chislennykh prognozov SOSMO-Ru, vypuskaemykh v ramkakh meteoobespecheniya Olimpiady Sochi // Tr. Gidromet. Rossii. 2014. Issue 352. P. 37–54.
 

Back