Vol. 32, issue 01, article # 2

Bruchkouski I. I., Borovski A. N., Dzhola A. V., Elansky N. F., Postylyakov O. V., Bazhenov O. E., Romanovskii O. A., Sadovnikov S. A., Kanaya Y. Observations of the formaldehyde integral content in the lower troposphere in urban agglomerations of Moscow and Tomsk using DOAS technique. // Optika Atmosfery i Okeana. 2019. V. 32. No. 01. P. 11-19. DOI: 10.15372/AOO20190102 [in Russian].
Copy the reference to clipboard

Abstract:

Regular measurements of the formaldehyde integral content (IC) in the lower troposphere have been carried out in the area of influence of the Moscow urban agglomeration (Zvenigorod scientific station – ZSS) and in the southeastern part of Tomsk (Siberian lidar station – SLS) since 2009. The paper briefly describes the equipment and measurement techniques and presents the first results of the measurements. The excess of the mean level of the formaldehyde content at the ZSS above its level at Tomsk is shown. The most probable cause of higher values of formaldehyde during the east winds at the ZSS is the polluted Moscow air. According to the observations in Tomsk, the possible influence of polluted urban air on the formaldehyde content appears at temperatures greater than 25 °С. According to observations at both stations, the positive dependence of the formaldehyde content on the air temperature was revealed.

Keywords:

formaldehyde, HCHO, differential spectroscopy, remote sensing, atmospheric boundary layer, Zvenigorod scientific station, Siberian lidar station

References:

   1. Seco R., Peñuelas J., Filella L. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations // Atmos. Environ. 2007. V. 41, N 12. P. 2477–2499. DOI: 10.1016/j.atmosenv.2006.11.029.
   2. Holzinger R., Warneke C., Hansel A., Jordan A., Lindinger W., Scharffe D.H., Schade G., Crutzen P.J. Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide // Geophys. Res. Lett. 1999. V. 26, N 8. P. 1161–1164. DOI: 10.1029/1999GL900156.
   3. Yokelson R.J., Goode J.G., Ward D.E., Susott R.A., Babbitt R.E., Wade D.D., Bertschi I., Griffith D.W.T., Hao W.M. Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy // J. Geophys. Res. D. 1999. V. 104, N 23. P. 30109–30125. DOI: 10.1029/1999JD900817.
   4. Andreae M.O., Merlet P. Emission of trace gases and aerosols from biomass burning // Global Biogeochem. Cycles. 2001. V. 15, N 4. P. 955–966. DOI: 10.1029/2000GB001382.
   5. Kohse-Hçinghaus K., Osswald P., Cool T.A., Kasper T., Hansen N., Qi F., Westbrook C.K., Westmoreland P.R. Verbrennungschemie der Biokraftstoffe: Von Ethanol bis Biodiesel // Angew. Chem. 2010. V. 122. P. 3652–3679.
   6. Leitner W., Klankermayer J., Pischinger S., Pitsch H., Kohse-Hoinghaus K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production // Angew. Chem., Int. Ed. Engl. 2017. V. 56, N 20. P. 5412–5452. DOI: 10.1002/anie.201607257.
   7. Weller R., Schrems O., Boddenberg A., Gäb S., Gautrois M. Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N–35°S) measured during the Albatross campaign // J. Geophys. Res. D. 2000. V. 105, N 11. P. 14401–14412. DOI: 10.1029/1999JD901145.
   8. Singh H.B., Chen Y., Staudt A., Jacob D., Blake D., Heikes B., Snow J. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds // Nature. 2001. V. 410, N 6832. P. 1078–1081. DOI: 10.1038/35074067.
   9. Singh H.B., Salas L.J., Chatfield R.B., Czech E., Fried A., Walega J., Evans M.J., Field B.D., Jacob D.J., Blake D., Heikes B., Talbot R., Sachse G., Crawford J.H., Avery M.A., Sandholm S., Fuelberg H. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P // J. Geophys. Res. 2004. V. 109. P. D15S07. DOI: 10.1029/2003JD003883.
10. Stavrakou T., Müller J.-F., De Smedt I., Van Roozendael M., van der Werf G.R., Giglio L., Guenther A. Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006 // Atmos. Chem. Phys. 2009. V. 9. P. 3663–3679. DOI: 10.5194/acp-9-3663-2009.
11. Kaiser J., Jacob D.J., Zhu L., Travis K.R., Fisher J.A., González Abad G., Zhang L., Zhang X., Fried A., Crounse J.D., St. Clair J.M., Wisthaler A. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US // Atmos. Chem. Phys. 2018. V. 18. P. 5483–5497. https://DOI.org/10.5194/acp-18-5483-2018.
12. Arlander D., Brüning D., Schmidt U., Ehhalt D. The tropospheric distribution of formaldehyde during TROPOZ II // J. Atmos. Chem. 1995. V. 22, N 3. P. 251–269. DOI: 10.1007/BF00696637.
13. Seinfield J.H., Pandis S.N. Atmospheric chemistry and physics: From air pollution to climate change. 2nd ed. Hoboken: John Wiley & Sons, 2006. 1232 pp.
14. Stavrakou T., Müller J.-F., De Smedt I., Van Roozendael M., van der Werf G.R., Giglio L., Guenther A. Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns // Atmos. Chem. Phys. 2009. V. 9. P. 1037–1060.
15. Bauwens M., Stavrakou T., Müller J.-F., De Smedt I., Van Roozendael M., van der Werf G.R., Wiedinmyer C., Kaiser J.W., Sindelarova K., Guenther A. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations // Atmos. Chem. Phys. 2016. V. 16. P. 10133–10158. DOI: 10.5194/acp-16-10133-2016.
16. Ivanov V.A., Elokhov A.S., Postylyakov O.V. O vozmozhnosti otsenki ob"ema vybrosov NO2 v gorodakh po zenitnym spektral'nym nablyudeniyam rasseyannoj solnechnoj radiatsii vblizi 450 nm // Optika atmosf. i okeana. 2012. V. 25, N 6. P. 539–543. DOI: 10.1134/S1024856012060061; Ivanov V.А., Еlokhov А.S., Pоstylyakov О.V. On the possibility of estimating the volume of NO2 emissions in cities using zenith spectral observations of diffuse solar radiation near 450 nm // Atmos. Ocean. Opt. 2012. V. 25, N 6. P. 434–439.
17. Zhu L., Jacob D.J., Kim P.S., Fisher J.A., Yu K., Travis K.R., Mickley L.J., Yantosca R.M., Sulprizio M.P., De Smedt I., González Abad G., Chance K., Li C., Ferrare R., Fried A., Hair J.W., Hanisco T.F., Richter D., Jo Scarino A., Walega J., Weibring P., Wolfe G.M. Observing atmospheric formaldehyde (HCHO) from space: Validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US // Atmos. Chem. Phys. 2016. V. 16. P. 13477–13490. DOI: 10.5194/acp-16-13477-2016.
18. OMI algorithm theoretical basis document. Volume IV: OMI trace gas algorithms // ATBD-OMI-02. Version 2.0, 2002. 78 p.
19. Pinardi G., Van Roozendael M., Abuhassan N., Adams C., Cede A., Clémer K., Fayt C., Frieß U., Gil M., Herman J., Hermans C., Hendrick F., Irie H., Merlaud A., Navarro Comas M., Peters E., Piters A.J.M., Puentedura O., Richter A., Schönhardt A., Shaiganfar R., Spinei E., Strong K., Takashima H., Vrekoussis M., Wagner T., Wittrock F., Yilmaz S. MAX-DOAS formaldehyde slant column measurements during CINDI: Intercomparison and analysis improvement // Atmos. Meas. Tech. 2013. V. 6. P. 167–185. DOI: 10.5194/amt-6-167-2013.
20. Wagner T., Beirle S., Brauers T., Deutschmann T., Frieß U., Hak C., Halla J. D., Heue K.P., Junkermann W., Li X., Platt U., Pundt-Gruber I. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets // Atmos. Meas. Tech. 2011. V. 4. P. 2685–2715. DOI: 10.5194/amt-4-2685-2011.
21. Lee X., Brauers T., Hofzumahaus A., Lu K., Li Y.P., Shao M., Wagner T., Wahner A. MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China // Atmos. Chem. Phys. 2013. V. 13. P. 2133–2151. DOI: 10.5194/acp-13-2133-2013.
22. Borovski A.N., Dzhola A.V., Elokhov A.S., Grechko E.I., Postylyakov O.V., Kanaya Y. First measurements of formaldehyde integral content at Zvenigorod Scientific Station // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5609–5627. DOI: 10.1080/01431161.2014.945011.
23. Postylyakov O.V., Borovski A.N., Dzhola A.V., Elokhov A.S., Grechko E.I., Kanaya Y. Measurements of formaldehyde total content in troposphere using DOAS technique in Moscow Region: Preliminary results of 3 year observations // Proc. SPIE. 2014. V. 9242. P. 92420T-7. DOI: 10.1117/12.2069824.
24. Vlemmix T., Hendrick F., Pinardi G., De Smedt I., Fayt C., Hermans C., Piters A., Wang P., Levelt P., Van Roozendael M. MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: Comparison of two profile retrieval approaches // Atmos. Meas. Tech. 2015. V. 8. P. 941–963. DOI: 10.5194/amt-8-941-2015.
25. Ivanov V., Borovski A., Postylyakov O. First comparison of formaldehyde integral contents in ABL retrieved during clear-sky and overcast conditions by ZDOAS technique // Proc. SPIE. 2017. V. 10424. P. 104240O-1–9. DOI: 10.1117/12.2278235.
26. Spinei E., Whitehill A., Fried A., Tiefengraber M., Knepp T.N., Herndon S., Herman J.R., Müller M., Abuhassan N., Cede A., Richter D., Walega J., Crawford J., Szykman J., Valin L., Williams D.J., Long R., Swap R.J., Lee Y., Nowak N., Poche B. The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study // Atmos. Meas. Tech. 2018. V. 11. P. 4943–4961. DOI: 10.5194/amt-11-4943-2018.
27. Vigouroux C., Bauer Aquino C.A., Bauwens M., Becker C., Blumenstock T., De Mazière M., García O., Grutter M., Guarin C., Hannigan J., Hase F., Jones N., Kivi R., Koshelev D., Langerock B., Lutsch E., Makarova M., Metzger J.-M., Müller J.-F., Notholt J., Ortega I., Palm M., Paton-Walsh C., Poberovskii A., Rettinger M., Robinson J., Smale D., Stavrakou T., Stremme W., Strong K., Sussmann R., Té Y., Toon G. NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances // Atmos. Meas. Tech. 2018. V. 11. P. 5049–5073. DOI: 10.5194/amt-11-5049-2018.
28. Makarova M.V., Poberovskij A.V., Viguru K., Imkhasin H.H. Izmereniya obshchego soderzhaniya formal'degida na stantsii St. Petersburg metodami nazemnoj IK Fur'e-spektrometrii // Materialy XХIV Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery», 2–5 july 2018 year. Tomsk: Izd-vo IOA SO RAN, 2018. P. С448–С451.
29. Boeke N.L., Marshall J.D., Alvarez S., Chance K.V., Fried A., Kurosu T.P., Rappenglück B., Richter D., Walega J., Weibring P., Millet D.B. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model // J. Geophys. Res. 2011. V. 116. P. D05303. DOI: 10.1029/2010JD014870.
30. Vigouroux C., Hendrick F., Stavrakou T., Dils B., De Smedt I., Hermans C., Merlaud A., Scolas F., Senten C., Vanhaelewyn G., Fally S., Carleer M., Metzger J.-M., Müller J.-F., van Roozendael M., De Mazièree M. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Reunion Island and comparisons with satellite and model data // Atmos. Chem. Phys. 2009. V. 9. P. 9523–9544. DOI: 10.5194/acp-9-9523-2009.
31. De Smedt I., Van Roozendael M., Stavrakou T., Müller J.-F., Lerot C., Theys N., Valks P., Hao N., van der A R. Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues // Atmos. Meas. Tech. 2012. V. 5. P. 2933–2949. DOI: 10.5194/amt-5-2933-2012.
32. De Smedt I., Stavrakou T., Hendrick F., Danckaert T., Vlemmix T., Pinardi G., Theys N., Lerot C., Gielen C., Vigouroux C., Hermans C., Fayt C., Veefkind P., Müller J.-F., Van Roozendael M. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations // Atmos. Chem. Phys. 2015. V. 15. P. 12519–12545. DOI: 10.5194/acp-15-12519-2015.
33. Kanaya Y., Irie H., Takashima H., Iwabuchi H., Akimoto H., Sudo K., Gu M., Chong J., Kim Y.J., Lee H., Li A., Si F., Xu J., Xie P.-H., Liu W.-Q., Dzhola A., Postylyakov O., Ivanov V., Grechko E., Terpugova S., Panchenko M. Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: Instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations // Atmos. Chem. Phys. 2014. V. 14. P. 7909–7927. DOI: 10.5194/acp-14-7909-2014.
34. Evseeva N.S. Geografiya Tomskoj oblasti: Prirodnye usloviya i resursy. Tomsk: Tom. gos. un-t, 2001. 223 p.
35. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoj optiki. M.: Nauka, 2003. 472 p.
36. Timofeev Yu.M. Global'naya sistema monitoringa parametrov atmosfery i poverkhnosti. SPb.: Sankt-Peterburgskij un-t, 2010. 129 p.
37. Timofeev Yu.M. Issledovaniya atmosfery Zemli metodom prozrachnosti. M.: Nauka, 2016. 344 p.
38. Platt U., Stutz J. Differential Optical Absorption Spectroscopy, Principles and Applications. Berlin: Springer, 2008. 597 р.
39. Postylyakov O., Borovski A., Ivanov V. On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique // Proc. SPIE. 2015. V. 9680. P. 96804O.1–10. DOI: 10.1117/12.2205925.
40. Andreev M., Chulichkov A.I., Medvedev A.P., Postylyakov O.V. Estimation of cloud base height using ground-based stereo photography: Method and first results // Proc. SPIE. 2014. V. 9242. P. 924219-1–7. DOI: 10.1117/12.2069826.
41. Chulichkov A.I., Andreev M.S., Golitsyn G.S., Elanskij N.F., Medvedev A.P., Postylyakov O.V. Ob opredelenii nizhnej granitsy oblachnosti po tsifrovoj stereos"emke s poverkhnosti Zemli // Optika atmosf. i okeana. 2012. V. 25, N 6. P. 539–543. DOI: 10.1134/S1024856012060061; Ivanov V.А. 2016. V. 29, N 11. P. 980–986. DOI: 10.15372/AOO20161112; Chulichkov А.I., Аndreev М.S., Gоlitsyn G.S., Еlаnsky N.F., Меdvedev А.P., Pоstylyakov О.V. On cloud bottom boundary determination by digital stereo photography from the Earth’s surface // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 184–190.
42. Postylyakov O.V., Belikov I.B., Elansky N.F., Elohov A.S. Observations of the ozone and nitrogen dioxide profiles in the TROICA-4 experiment // Adv. Space Res. 2006. V. 37, N 12. P. 2231–2237. DOI: 10.1016/j.asr.2005.07.023.
43. Borovski A., Elokhov A., Postylyakov O., Bruchkouski I. Study of different operational modes of the IAP 2-port-DOAS instrument for investigation of atmospheric trace gases during CINDI-2 campaign // Proc. SPIE. 2017. V. 10424. DOI: 10.1117/12.2278234.
44. Postylyakov O.V. Model' perenosa radiatsii v sfericheskoj atmosfere s raschetom poslojnykh vozdushnykh mass i nekotorye ee prilozheniya // Izv. RAN. Fiz. atmosf. i okeana. 2004. V. 40, N 3. P. 314–329.
45. Postylyakov O.V., Borovski A.N., Ivanov V. A., Dzhola A.V., Elokhov A.S., Grechko E.I., Kanaya Y. Formaldehyde integral content in troposphere of Moscow Region: Preliminary results of 6 years of measurements using DOAS technique // Proc. SPIE. 2016. V. 10035. DOI: 10.1117/12.2248630.
46. Meller R., Moortgat G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm // J. Geophys. Res. 2000. V. 105. P. 7089–7101.
47. Vandaele A.C., Hermans C., Simon P.C., Van Roozendael M., Guilmot J.M., Carleer M., Colin R. Fourier transform measurement of NO2 absorption cross section in the visible range at room temperature // J. Atmos. Chem. 1996. V. 25. P. 289–305.
48. Serdyuchenko A., Gorshelev V., Weber M., Chehade W., Burrows J.P. High spectral resolution ozone absorption cross sections. Part 2: Temperature dependence // Atmos. Meas. Tech. 2014. V. 7, N 2. P. 625–636. URL: https://doi.org/10.5194/amt-7-625-2014 (last access: 12.09.2018).
49. Thalman R.M., Volkamer R. Temperature Dependent Absorption Cross-Sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure // Phys. Chem. Chem. Phys. 2013. V. 15, N 15. P. 15,371–15,381. URL: https://doi.org/10.1039/c3cp50968k (last access: 12.09.2018).
50. Chance K.V., Spurr R.J. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum // App. Opt. 1997. V. 36, N 21. P. 5224–5230.