Vol. 31, issue 11, article # 3

Troshkin D.N., Pavlov V.E. Statistical model of cloud optical thickness in specific Yamal areas using satellite-based data. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 876–880 [in Russian].
Copy the reference to clipboard

The statistical analysis of summer cloud optical thickness over three geographically restricted zones in the region of the Ob Bay (dry and wet zones, coordinates are given) is performed with the use of ENVISAT-based experimental data on the cloud optical thickness obtained in 2008–2011. Type of functions of probability density of cloud optical thickness for each zone is determined. In logarithmic coordinates, each of these functions has several (3–4) maxima, indicating the occurrence of individual modes. The functions are approximated by a set of normal logarithmic distributions with certain parameters. The parameters prove to be well repetitive from year to year. There are three modes above the low-watered western zone, while in the eastern zones, where full-flowing rivers with relatively warm waters run from the south, they increase to four. On the authors’ opinion, water evaporation with subsequent condensation promotes the formation of an additional mode with low optical thickness. Anthropogenic emissions, which increase the number of condensation nuclei in the eastern zones, may also play a specific role in the process of enhanced condensation. Distribution function curves and tables with parameters are presented. Such data can be useful for calculations on radiation regime for small Yamal areas.


Yamal Peninsula, the Gulf of Ob, Khalmyer Bay, Baidaratskaya Bay, probability density of clouds’ optical thickness


    1. Otsenochnyj doklad ob izmeneniyah klimata i ih posledstvij na territorii Rossijskoj Federatsii. Volume 1. Izmenenie klimata. M.: Rosgidromet, 2008. 227 p.
   2. Zuev V.E., Titov G.A. Sovremennye problemy atmosfernoj optiki. Volume 9. Optika atmosfery i klimat. Tomsk: Spektr, 1997. 271 p.
   3. Kondrat'ev K.Ya. Issledovaniya Zemli iz Kosmosa: nauchnyj plan sistemy EOS // Issled. Zemli iz kosmosa. 2000. N 3. P. 82–91.
   4. Troshkin D.N., Kabanov M.V., Pavlov V.E., Romanov A.N. Funktsiya raspredeleniya opticheskih tolshch oblakov nad Zapadno-Sibirskoj nizmennost'yu // Dokl. AN. Geofizika. 2011. V. 436, N 2. P. 258–261.
   5. MERIS USER GUIDE, Paragraph Level 2. Physical Justification, 10.1&2.2 Cloud Albedo and Cloud Optical Thickness [Electronic resource]. URL: http://envisat.esa.int/instruments/meris/pdf/atbd_2_01.pdf (last access: 11.04.2011).
   6. Bower K.N., Choularton T.W., Latham J, Nelson J., Baker M.B., Jensen J. A Parameterization of warm clouds for use in the atmospheric general circulation models // J. Atmos. Sci. 1994. V. 51, N 19. P. 2722–2732.
   7. Nakajiama T., King M.D. Determination of the optical thickness and effective particle radius of cloud from reflected solar radiation measurements // J. Atmos. Sci. 1991. V. 48, N 5. P. 728–750.
   8. King M.D. Determination of the scaled optical thickness of cloud from reflected solar radiation measurements // J. Atmos. Sci. 1987. V. 44, N 13. P. 1734–1751.
   9. Konoshonkin A.V. Rasseyanie sveta na atmosfernyh ledyanyh kristallah pri lazernom zondirovanii: Dis. … d-ra fiz.-mat. nauk. Tomsk: In-t optiki atmosf. im. V.E. Zueva SO RAN. Tomsk, 2017. 283 p.
10. Rozenberg G.V., Gorchakov G.I., Georgievskij Yu.S., Lyubovtseva Yu.S. Opticheskie parametry atmosfernogo aerozolya // Fizika atmosfery i problemy klimata. M.: Nauka, 1980. P. 216–257.