Vol. 31, issue 11, article # 12

Serdyukov V.I., Sinitsa L.N., Lugovskoy A.A., Emelyanov N.M. The low-temperature cell for studying the absorption spectra of greenhouse gases. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 930–936 [in Russian].
Copy the reference to clipboard
Abstract:

A low temperature vacuum cell 220 cm long with windows of quartz, ZnSe, and KBr has been developed for work with the Bruker IFS 125-M high resolution Fourier spectrometer providing a threshold sensitivity to absorption on the order of 10-7 cm-1. The cell allows recording the absorption spectra of gases in the temperature range from 200 to 296 K with the accuracy of 0.9 K in the region 1000–20000 cm-1.

Keywords:

Fourier spectroscopy, absorption spectrum, methane

References:

   1. Warneck P. Chemistry of the Natural Atmosphere. San Diego: Academic Press, 1988. 757 p.
   2. Sepulveda E., Schneider M., Hase F. Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry // Atmos. Meas. Tech. 2012. V. 5. P. 1425–1441.
   3. Crutzen P.J. Geophysiology of Amazonia: Vegetation and Climate Interactions. New York: Wiley, 1987. 526 p.
   4. Goody R. Atmospheres of major planets // J. Atmos. Sci. 1969. V. 26. P. 997–1001.
   5. Combes M., Bergh C.D., Lecacheus J., Maillard J.P. Identification of 13CH4 in atmosphere of Saturn // Astron. Astrophys. 1975. V. 40. P. 81–84.
   6. Wiеdemann G., Bjoraker G.L., Jennings D.E. Detection of 13CH4 in Jupiter atmosphere // J. Astrophys. 1991. V. 383. P. 29–32.
   7. Encrenaz T. Remote sensing analysis of solar-system objects // Phys. Scr. 2008. V. 130. P. 014037.
   8. Goody R.M., Yung Y.L. Atmospheric Radiation: Theoretical Basis. New York: Oxford University Press Inc., 1995. 544 p.
   9. Sung K., Mantz A.W., Smith M.A.H. Cryogenic absorption cells operating inside a Bruker IFS 125HR: First results for 13CH4 at 7 mm // J. Mol. Spectrosc. 2010. V. 262. P. 122–134.
10. Mantz A.W., Sung K., Brown L.R. A cryogenic Herriott cell vacuum-coupled to a Bruker IFS 25HR // J. Mol. Spectrosc. 2014. V. 304. P. 12–24.
11. Jennings D.E., Hillman J.J. Shock isolator for diode-laser operations on a closed-cycle refrigerator // Rev. Sci. Instrum. 1977. V. 48. P. 1568–1569.
12. Mantz A.W., Malathy D.V., Benner D.C., Smith M.A.H., Predoi-Cross A., Dulick M. A multispectrum analysis of widths and shifts in the 2010–2260 cm-1 region of 12C16O broadened by Helium at temperatures between 80–297 K // J. Mol. Struct. 2005. V. 742. P. 99–110.
13. Kassi S., Gao B., Romanini D., Campargue A. The near infrared (1.30–1.70 mm) absorption spectrum of methane down to 77 K // Phys. Chem. Chem. Phys. 2008. V. 10. P. 4410–9.
14. Campargue A., Wang Le, Kassi S., Masat M., Votava O. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 mm) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 1141–1151.
15. Margolis J.S., Fox K. Infrared absorption spectrum of CH4 at 9050 cm-1 // J. Chem. Phys. 1968. V. 49. P. 2451–2452.
16. Maillard J.P., Combes M., Encrenaz Th., Lecacheux J. New Infrared Spectra of the Jovian Planets from 12000 to 4000 cm by Fourier Transform Spectroscopy // Astrophys. 1973. V. 25. P. 219–232.
17. Sinitsa L.N. Vysokochuvstvitel'naya lazernaya spektroskopiya vysokikh kolebatel'no-vrashchatel'nykh sostoyanij molekul: Dis. … d-ra fiz.-mat. nauk. Tomsk: In-t optiki atmosf. SO RAN, 1988. 420 p.
 

Back