Vol. 31, issue 09, article # 6

Stephan A., Wildmann N., Smalikho I. N. Effectiveness of the MFAS method for determination of wind velocity from Windcube 200s lidar measurements. // Optika Atmosfery i Okeana. 2018. V. 31. No. 09. P. 725–733. DOI: 10.15372/AOO20180906 [in Russian].
Copy the reference to clipboard

Abstract:

The method of maximum of function of accumulated spectra (MFAS) has been used for the first time to estimate the wind velocity from measurements with a micropulsed coherent Doppler lidar (MPCDL) during conical scanning with a probing beam. It is ascertained in an experiment with a Windcube 200s MPCDL that MFAS allows an increase in the maximum altitude of retrieval of the vertical profiles of the wind speed and direction by 30% on the average in comparison with the filtered sine-wave fitting.

Keywords:

coherent Doppler lidar, velocity and direction of wind

References:

   1. Lhermitte R.M., Atlas D. Precipitation motion by pulse Doppler // Proc. 9th Weather Radar Conf. 1961. Kansas City, MO, USA. P. 218–223.
   2. Doviak R.J., Zrnic D.S. Doppler radar and weather observations. San Diego: Academic Press, 1984. 458 p.
   3. Smalikho I.N. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar // J. Atmos. Ocean. Technol. 2003. V. 20, N 2. P. 276–291.
   4. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-range windscanner system // Remote Sens. 2016. V. 8, N 11. Р. 896. DOI: 10.3390/rs8110896.
   5. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
   6. Salamitou P., Dabas A., Flamant P.H. Simulation in the time domain for heterodyne coherent laser radar // Appl. Opt. 1995. V. 34, N 3. P. 499–506.
   7. Frehlich R.G. Effect of wind turbulence on coherent Doppler lidar performance // J. Atmos. Ocean. Technol. 1997. V. 14, N 2. P. 54–75.