Vol. 31, issue 08, article # 4

Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Afanas’ev V.L., Balega Yu.Yu., Vlasyuk V.V., Panchuk V.E., Yakopov G.V. Researches of the astroclimate in the Special Astrophysical Observatory of RAS. // Optika Atmosfery i Okeana. 2018. V. 31. No. 08. P. 616–627 [in Russian].
Copy the reference to clipboard
Abstract:

The results of the astroclimate characteristics measurements in the Special Astrophysical Observatory of RAS (SAO, North Caucasus) in 2012 and 2016 are presented. The experimental results are obtained from long-term observation series of the day and night astroclimate in SAO. The presence of non-Kolmogorov coherent turbulence was detected over SAO territory, in which the quality of telescope images improves. The influence of an underlying surface type and a wind speed direction on the formation mode of coherent turbulence is explained. It was found that the causes for coherent turbulence formation are the mountainous terrain and the uneven heating of underlying surface. The airflow velocity distribution inside the dome room of the Big Telescope Alt-azimuth (BTA) had been experimentally researched. Numerical simulation of the air mass motions inside the BTA dome room had been performed to analyze the influence of a temperature regime and a form of constructions. The solutions of the boundary value problem confirm the existence of the experimentally registered vortex structure with a vertical rotation axis. The causes for its formation are the temperature gradients of the dome surfaces.

Keywords:

telescope, astroclimate, turbulence, coherent structure, hydrodynamics equations

References:

    1.    Panchuk V.E., Afanas'ev V.L. Astroklimat Severnogo Kavkaza – mify i real'nost' // Astrofiz. byul. 2011. V. 66, N 2. P. 253–274.
   2. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Opticheskie svojstva turbulentnosti v gornom pogranichnom sloe atmosfery. Novosibirsk: Izd-vo SO RAN, 2016. 153 p.
   3. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Causes of non-Kolmogorov turbulence in the atmosphere // Appl. Opt. 2016. V. 55, N 12. P. B163–B168.
   4. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnosti na spetsializirovannyh opticheskih trassah v astronomicheskih teleskopah // Izv. vuz. Fizika. 2016. V. 59, N 12/2. P. 134–137.
   5. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Drozhanie astronomicheskih izobrazhenij v kogerentnoj turbulentnosti // Tr. XXV Vseros. nauch. konf. s mezhdunar. uchastiem «Rasprostranenie radiovoln», posvyashchennoj 80-letiyu otechestvennyh ionosfernyh issledovanij. Tomsk, 2016. V. 2. P. 35–38.
   6. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnosti v observatoriyah yuga Sibiri // Materialy IV Vseros. nauch. konf. «Problemy voenno-prikladnoj geofiziki i kontrolya sostoyaniya prirodnoj sredy» / pod red. Pen'kova. SPb.: VKA im. A.F. Mozhajskogo, 2016. P. 272–275.
   7. Stull R.B. An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer academic publishers, 1988. 670 p.
   8. Google Earth V.7.1.8.3036 (17.01.2017). Nizhnij Arhyz. Kavkaz. 43°39¢54,33¢¢ s.sh., 41°15¢20,85¢¢ v.d., obzor s vysoty 13.75 km. DigitalGlobe 2016.
   9. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Eksperimental'nye issledovaniya astroklimata v Spetsial'noj astrofizicheskoj observatorii RAN // Aktual'nye problemy radiofiziki 2017: sb. st. VII Mezhdunar. nauch.-prakt. konf. Tomsk: STT, 2017. P. 151–155.
10. Bol'shoj Azimutal'nyj teleskop (BTA). Tekhnicheskoe opisanie. LOMO «Teleskop, truba teleskopa». 77 p. URL: http://w0.sao.ru/hq/sekbta/Tex_doc/ Book1_view.pdf (data obrashcheniya: 15.07.2016).
11. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye struktury v podkupol'nom prostranstve Bol'shogo teleskopa azimutal'nogo. Chislennye resheniya // Aktual'nye problemy radiofiziki 2017: sb. st. VII Mezhdunar. nauch.-prakt. konf. Tomsk: STT, 2017. P. 147–150.
12. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Modelirovanie kogerentnyh struktur (topologicheskih solitonov) v zakrytyh pomeshcheniyah putem chislennogo resheniya uravnenij gidrodinamiki // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 120–133.
13. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnyh dvizhenij vozduha v shahte glavnogo zerkala Sibirskoj lidarnoj stantsii IOA SO RAN. Eksperiment i chislennoe modelirovanie // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 905–910.
14. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Turbulence and heat exchange inside the dome room of lidar station. Experiment and simulation // J. Phys.: Conf. Ser. 2016. V. 754, N 2. P. 134–137.
15. Popinet S. The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2001–2015. URL: http://gfs.sf.net (last access: 25.02.2018).
16. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. V. VI. Gidrodinamika. M.: Nauka, 1986. 736 p.
 

Back