Vol. 31, issue 08, article # 10

Zuev V.V., Saveljeva E.S., Parezheva T.V. Study of the possible impact of the Calbuco volcano eruption on the abnormal destruction of stratospheric ozone over the Antarctic in spring 2015. // Optika Atmosfery i Okeana. 2018. V. 31. No. 08. P. 660–664 [in Russian].
Copy the reference to clipboard
Abstract:

One of the strongest stratospheric ozone depletion events over the Antarctic was observed in October–November 2015. The increase in the ozone hole was associated with the eruption of Calbuco volcano (Chile) in April 2015 with a maximum plume altitude of ~ 17 km. Based on the ERA-Interim reanalysis data and the NOAA HYSPLIT trajectory model, we estimated the possibility of penetration of volcanic aerosols inside the polar vortex. It was shown that volcanic aerosols could not contribute to the intensification of ozone depletion reactions, because it was outside the stable polar vortex.

Keywords:

Calbuco volcano eruption, Antarctic ozone hole, the southern polar vortex

References:

    1.    Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613.
   2. Waugh D.W., Polvani L.M. Stratospheric polar vortices // Stratos. Dynamics: Trans. Chem. Geophys. Monograph Ser. 2010. V. 190. P. 43–57.
   3. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // Stratos. Dynamics: Trans. Chem. Geophys. Monograph Ser. 2010. V. 190. P. 157–171.
   4. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758.
   5. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p.
   6. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51, N 20. P. 2973–2994.
   7. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54, N 18. P. 2241–2260.
   8. Young P.J., Rosenlof K.H., Solomon S., Sherwood S.C., Fu Q., Lamarque J.-F. Changes in stratospheric temperatures and their implications for changes in the Brewer–Dobson circulation, 1979–2005 // J. Clim. 2012. V. 25. P. 1759–1772.
   9. Hofmann D.J., Solomon S. Ozone destruction through heterogeneous chemistry following the eruption of El Chichon // J. Geophys. Res. D. 1989. V. 94, N 4. P. 5029–5041.
10. McCormick M.P., Thomason L.W., Trepte C.R. Atmospheric Effects of the Mt. Pinatubo Eruption // Nature. 1995. V. 373, N 6513. P. 399–404.
11. Randel W.J., Wu F., Russell J.M., Waters J.W., Froidevaux L. Ozone and temperature changes in the stratosphere following the eruption of Pinatubo // J. Geophys. Res. D. 1995. V. 100, N 8. P. 16753–16764.
12. Solomon S., Portmann R.W., Garcia R.R., Randel W.J., Wu F., Nagatani R.M., Gleason J., Thomason L., Poole L.R., McCormick M.P. Ozone depletion at midlatitudes: Coupling of volcanic aerosols and temperature variability to anthropogenic chlorine // Geophys. Res. Lett. 1998. V. 25, N 11. P. 1871–1874.
13. Robock A. Volcanic eruptions and climate // Rev. Geophys. 2000. V. 38, N 2. P. 191–219.
14. Solomon S., Ivy D.J., Kinnison D., Mills M.J., Neely R.R., Schmidt A. Emergence of healing in the Antarctic ozone layer // Science. 2016. V. 353. P. 269–274.
15. Ivy D.J., Solomon S., Kinnison D., Mills M.J., Schmidt A., Neely III R.R. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model // Geophys. Res. Lett. 2017. V. 44, N 5. P. 2556–2561.
16. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31, N 21. P. L21104.
17. Goddard Space Flight Center (GSFC). NASA’s Ozone Hole Watch Web Site (online database) [Electronic resource]. URL: http://ozonewatch.gsfc.nasa.gov/ meteorology/SH.html (last access: 25.03.2018).
18. The European Centre for Medium-Range Weather Forecasts (ECMWF). ERA Interim reanalysis (online database) [Electronic resource]. URL: http://apps.ecmwf. int/datasets/data/ interim-full-daily/levtype=pl/ (last access: 25.03.2018).
19. Global Volcanism Program (GVP). Smithsonian National Museum of Natural History [Electronic resource]. URL: https://volcano.si.edu (last access: 25.03.2018).
20. Gryazin V.I., Beresnev S.A. Influence of vertical wind on stratospheric aerosol transport // Meteorol. Atmos. Phys. 2011. V. 110, N 3–4. P. 151–162.
21. Malina K.M. Spravochnik sernokislotchika. M.: Himiya, 1971. 744 p.
22. Bègue N., Vignelles D., Berthet G., Portafaix T., Payen G., Jégou F., Benchérif H., Jumelet J., Vernier J.-P., Lurton T., Renard J.-B., Clarisse L., Duverger V., Posny F., Metzger J.-M., Godin-Beekmann S. Long-range isentropic transport of stratospheric aerosols over Southern Hemisphere following the Calbuco eruption in April 2015 // Atmos. Chem. Phys. 2017. V. 17, N 24. P. 15019–15036.
23. Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition // Aust. Meteorol. Mag. 1998. V. 47. P. 295–308.
 

Back