Vol. 31, issue 06, article # 2

Khutorova O. G., Khutorov V. E., Teptin G. M. Interannual variability of surface and integral moisture content in the European territory and atmospheric circulation. // Optika Atmosfery i Okeana. 2018. V. 31. No. 06. P. 432–437. DOI: 10.15372/AOO20180602 [in Russian].
Copy the reference to clipboard

Abstract:

The variability of time series of the integral moisture content of the atmosphere and the surface partial pressure of water vapor for the territory of Europe over a long period have been studied. The main contribution to variance of moisture contents is given by seasonal variations; it is 60–70%. Mesoscale processes give 7–17%; synoptic processes give 17–27%. The linear trend contributes less than 1% to the overall variance of the variability of the atmospheric moisture content in Europe.
It is shown that the interannual variability of the atmospheric moisture content is manifested both in the quasiperiodic variability of the annual mean values and in the variations in the intensity of the synoptic processes. The irregular coherence of variations in the circulation indices and surface partial pressure of water vapor in Europe with periods of 2–3 years, 5–6, 8–11, and 10–13 years is established.

Keywords:

atmospheric integral moisture content, water vapor partial pressure, interannual processes, remote sensing by satellite navigation systems

References:

  1. Bevis M., Businger S., Herring T.A., Rocken C., Anthes A. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System // J. Geophys. Res. D. 1992. V. 97, N 14. P. 15787–15801.
  2. Glowacki J., Penna N.T., Bourke W.P. Validation of GPS-based estimates of integrated water vapor for the Australian region and identification of diurnal variability // Aust. Met. Mag. 2006. V. 55. P. 131–148.
  3. Ning T., Haas R., Elgered G., Willén U. Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden // J. Geodesy. 2012. V. 86, iss. 7. P. 565–575.
  4. Pacione R., Fionda E., Ferrara R. Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy // Phys. Chem. Earth. 2002. V. 27. P. 309–316.
  5. Roman J.A., Knuteson R.O., Ackerman S.A., Tobin D.C., Revercomb H.E. Assessment of regional global climate model water vapor bias and trends using precipitable water vapor observations from a Network of Global Positioning Satellite Receivers in the U.S. Great Plains and  Midwest  //  J.  Clim.  2012.  V. 25.  P. 5471–5493.
  6. Guoping L., Dingfa H., Biquan L. Experiment on driving precipitable water vapor from ground-based GPS Network in Chengdu Plain // Geo-Spat. Inf. Sci. 2007. V. 10. P. 181–185.
  7. Shuanggen J., Li Z., Choa J. Integrated water vapor field and multiscale variations over China from GPS measurements // J. Appl. Meteorol. Climatol. 2000. V. 47. P. 3008–3015.
  8. Raju S., Saha K., Bijoy V.T. Measurement of integrated water vapor over Bangalore using ground based GPS data // Proc. URSI General Assembly. New Delphi, 2005. P. 20–24.
  9. Sapucci L., Machado L., Monico J. Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region // J. Atmos. Ocean. Technol. 2007. V. 24. P. 1880–1894.
  10.  Jakobson E., Ohvril H., Elgered G. Diurnal variability of precipitable water in the Baltic region, impact on the transmittance of the direct solar radiatio // Boreal Environ. Res. 2009. V. 14. P. 45–55.
  11. Haas R., Ning T., Elgered G. Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques // ESA Proc. WPP 326: Proc. 3rd International Colloquium on Scientific and Fundamental Aspects of the Galileo Program. 31 August – 2 September, 2011.  Denmark,   Copenhagen.
  12. Morland J., Collaud Coen M., Hocke K. Tropospheric water vapor above Switzerland over the last 12 years // Atmos. Chem. Phys. 2009. V. 9. P. 5975–5988.
  13. Kurbatkin G.P., Smirnov V.D. Mezhgodovye variacii temperatury troposfery, svyazannye s dekadnymi izmeneniyami Ceveroatlanticheskogo kolebaniya // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 4. P. 435–447.
  14. Perevedencev YU.P., SHantalinskij K.M., Auhadeev T.R., Ismagilov N.V., Zandi R. O vliyanii makrocirkulyacionnyh sistem na termobaricheskij rezhim Privolzhskogo federal'nogo okruga // Uchen. zap. Kazanskogo un-ta. 2014. V. 156, book. 2. P. 156–169.
  15. Kanuhina A.YU., Nechaeva L.A., Pogorel'cev A.I., Suvorova E.V. Klimaticheskie trendy temperatury, zonal'nogo potoka i stacionarnyh planetarnyh voln po dannym NCEP/NCAR reanaliza // Izv. RAN. Fiz. atmosf. i okeana. 2007. V. 43, N 6. P. 754–763.
  16. Sukovatov K.Yu., Bezuglova N.N. Kogerentnye kolebaniya atmosfernyh osadkov holodnogo sezona na territorii Ishimskoj ravniny i indeksov atmosfernoj cirkulyacii // Meteorol. i gidrol. 2015. N 1. P. 18–26.
  17. Khutorova O.G., Kalinnikov V.V., Kurbangaliev T.R. Variacii integral'nogo atmosfernogo vlagosoderzhaniya, poluchennye po fazovym izmereniyam priemnikov sputnikovyh navigacionnyh sistem // Optika atmosf. i okeana. 2012. V. 25, N 6. P. 529–533; Khutorova O.G., Kalinnikov V.V., Kurbangaliev T.R. Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems // Atmos. Ocean. Opt. 2012. V. 25, N 6. P. 429–433.
  18. Vsemirnaya sluzhba GNSS [EHlektronnyj resurs]. URL: http//igscb.jpl.nasa.gov/ (data obrashcheniya: 13.06.2017).
  19. Dzhenkins G., Vatts D. Spektral'nyj analiz i ego prilozheniya: v 2 v. M.: Mir, 1971. V. 1, 312 p. V. 2, 228 p.
  20. Zhuravleva T.B., Firsov K.M. Ob izmenchivosti radiacionnykh kharakteristik pri variaciyakh vodyanogo para v atmosfere v polose 940 nm: rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 777–784.
  21. Chesnokova T.Yu., Zhuravleva T.B., Voronina Yu.V., Sklyadneva T.K., Lomakina N.Ya., Chencov A.V. Modelirovanie potokov solnechnogo izlucheniya s ispol'zovaniem vysotnykh profilej koncentracii vodyanogo para, kharakternykh dlya uslovij Zapadnoj Sibiri // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 969–975; Chesnokova T.Yu., Zhuravleva T.B., Voronina Yu.V, Sklyadneva T.K., Lomakina N.Ya., Chentsov A.V. Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberian // Atmos. Ocean. Opt. 2012. V. 25, N 2. P. 147–153.
  22. Khutorova O.G., Teptin G.M. Issledovanie mezomasshtabnykh volnovykh processov v prizemnom sloe po sinkhronnym izmereniyam atmosfernykh parametrov i primesej // Izv. RAN. Fiz. atmosf. i okeana. 2009. V. 45, N 5. P. 588–596.
  23. Bulygina O.N., Veselov V.M., Razuvaev V.N., Aleksandrova T.M. Opisanie massiva srochnykh dannykh ob osnovnykh meteorologicheskikh parametrakh na stanciyakh Rossii. Svidetel'stvo o gosudarstvennoj registracii bazy dannykh N 2014620549 [Elektronnyj resurs]. URL: http://meteo.ru/data/163-basic-parameters# opisanie-massiva-dannykh (data obrashcheniya: 15.06.2017).
  24. Ruprecht E., Schröder S.S., Ubl S. On the relation between NAO and water vapour transport toward Europe // Meteorol. Z. 2002. V. 11, N 6. P. 395–401.
  25. Bardin M.Yu., Polonskij A.B. Severoatlanticheskoe kolebanie i sinopticheskaya izmenchivost' v Evropejsko- Atlanticheskom regione v zimnij period // Izv. RAN. Fiz. atmosf. i okeana. 2005. V. 41, N 2. P. 3–13.
  26. Mokhov I.I., Semenov V.A., Khon V.CH., Latif M, Rekner E. Svyaz' anomalij klimata Evrazii i Severnoj Atlantiki s estestvennymi variaciyami atlanticheskoj termokhalinnoj cirkulyacii po dolgoperiodnym model'nym raschetam // Dokl. AN. 2008. V. 419, N 5. P. 687–690.
  27. Franzke C., Feldstein S.B. The continuum and dynamics of Northern hemisphere teleconnection patterns // J. Atmos. Sci. 2005. V. 62, N 9. P. 3250–3267.
  28. Thompson D.W.J., Wallace J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields // Geophys. Res. Lett. 1998. V. 25, N 9. P. 1297–1300.
  29. Barnston A.G., Livezey R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns // Mon. Weather Rev. 1987. V. 115. P. 1083–1126.
  30. Terray P. Southern hemisphere extra-tropical forcing: A new paradigm for El Niño-Southern Oscillation // Clim. Dyn. 2011. V. 36, N 11–12. P. 2171–2199.
  31. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The quasi-biennial oscillation // Rev. Geophys. 2001. V. 39, N 2. P. 179–229.
  32. Bezverkhnij V.A., Gruzdev A.N. O svyazi kvazidesyatiletnikh i kvazidvukhletnikh kolebanij solnechnoj aktivnosti i ekvatorial'nogo stratosfernogo vetra // Dokl. AN. 2007. V. 415, N 6. P. 809–813.