Vol. 31, issue 06, article # 10

Zakharenko V.S., Daibova E.B. Composition and properties of the surface of aerosol microparticles produced from nonporosity zinc oxide in ambient air. // Optika Atmosfery i Okeana. 2018. V. 31. No. 06. P. 481–484 [in Russian].
Copy the reference to clipboard
Abstract:

The adsorption and photosorption properties of plasmatronic ZnO particles under ambient air are investigated. The composition analysis of surface layer adsorbed on microparticles is carried out. The kinetics of desorption and adsorption processes on microparticle surfaces under darkness and illumination are studied. The quantum yield and spectral dependency of quantum yield of NO photoadsorption are determined.

Keywords:

precipitated aerosol, plasmotronic ZnO, surface composition, photodesorption, NO photoadsorption, quantum yield, surface absorption

References:

  1. Boreskov G.K. Geterogennyj kataliz. M.: Nauka, 1986. 303 p.
  2. Kostov I. Mineralogiya. M.: Mir, 1971. 584 p.
  3. Ong Ch.B., Ng L.J., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications // Renew. Sust. Energ. Rev. 2018. V. 81, N 4. P. 536–551.
  4. Qi K., Cheng B., Yu J., Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO // J. Alloys Compd. 2017. V. 727. P. 792–820.
  5. Zaharenko V.S., Mosejchuk A.N. Adsorbtsiya freonov karbonatom kal'tsiya v usloviyah atmosfery // Optika atmosf. i okeana. 2005. V. 18, N 5–6. P. 506–510.
  6. Brimblkumb P. Sostav i himiya atmosfery. M.: Mir, 1988. 351 с.
  7. Woll Ch. The chemistry and physics of zink oxide surfaces // Prog. Surf. Sci. 2007. V. 82, N 1. P. 55–150.
  8. Breedon M., Spencer M.J.S., Yarovsky I. Adsorption of NO and NO2 on the ZnO (2110) surface: A DFT study // Surf. Sci. 2009. V. 603, iss. 24. P. 3389–3394.
  9. Gopel W. Oxygen interaction of stoichiometric and non-stoichiometric ZnO prismatic surfaces // Surf. Sci. 1977. V. 62, iss. 1. P. 165–182.
  10. Zakharenko V.S., Lyulyukin M.N., Kozlov D.V. Composition of surface adsorbed layer of TiO2 stored in ambient air // Catal. Sustain. Energy. 2017. N 4. P. 25–30.
  11. Zaharenko V.S., Cherkashin A.E., Kejer N.P. Spektral'nye zavisimosti fotoadsorbtsii kisloroda i fotokataliticheskogo okisleniya okisi ugleroda na okisi tsinka // Dokl. AN SSSR. 1973. V. 211, N 3. P. 628–632.
  12. Zakharenko V.S. Photoadsorption and photocatalytic oxidation on the metal oxides components of tropospheric solid aerosols under the Earth’s atmosphere conditions // Catal. Today. 1997. V. 39, N 3. P. 243–249.
  13. Solonitsyn Yu.P. Fotoadsorbtsiya O2 na ZnO. Spektral'naya i temperaturnaya zavisimosti skorosti fotoadsorbtsii // Zhurn. fiz. himii. 1962. V. 36, N 4. P. 863–866.
  14. Luth H. Surface state spectroscopy on zinc oxide crystals by means of modulated photoconductivity measurements // Surf. Sci. 1973. V. 37, iss. 1. P. 90–99.
  15. Andreev M.S., Prudnikov I.M. Spektral'noe issledovanie fotosorbtsii O2 i CH4 i fotoindutsirovannyh signalov EPR na ZnO // Kinetika i kataliz. 1974. V. 15, N 3. P. 715–721.

Back