Vol. 31, issue 04, article # 2

Starikov V.I. Vibrational dependence of the broadening coefficients of H2O absorption lines perturbed by neon, krypton, and xenon pressure. // Optika Atmosfery i Okeana. 2018. V. 31. No. 04. P. 253–262 [in Russian].
Copy the reference to clipboard
Abstract:

The dependence of the intermolecular interaction potentials for the H2O–Ne, H2O–Kr, and H2O–Xe systems on the vibrational quantum numbers of H2O molecule is derived. The broadening coefficients γ are calculated for seven vibrational bands ν1, ν2, ν3, 2ν2, ν1 + ν2, ν2 + ν3, and ν1 + ν2 + ν3 of H2O molecule from the region 640–9888 cm-1. The analytical formula are suggested for the calculated broadening coefficients γ at T = 296 K. It is shown that the excitation of stretching modes of the vibrations in H2O molecule increases the broadening coefficients γ. The influence of the bending vibrations on γ is insignificant.

Keywords:

line broadening, vibrational dependence, water vapor, neon, krypton, xenon

References:

    1.    Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Vibrational dependence of an intermolecular potential for H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253.
   2. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Broadening parameters of the H2O–He collisional system for astrophysical applications // J. Mol. Spectrosc. 2016. V. 321. P. 50–58.
   3. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and – shifting parameters of the water vapor transitions in the wide spectral region // Mol. Phys. 2017. V. 115, N 14. P. 1642–1656. DOI: 10.1080/ 00268976.2017.1311422.
   4. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943.
   5. Starikov V.I. Vibration-rotation interaction potential for H2O–A system // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 155. P. 49–56.
   6. Labani B., Bonamy J., Robert D., Hartmann J.M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84. P. 4256–4267.
   7. Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // Mol. Phys. 1972. V. 24, N 6. P. 1265–1290.
   8. Aliev M.R., Watson J.K.J. Higher-order effects in the vibration-rotation spectra of semi rigid molecules / K.N. Rao (ed.) // Molecular Spectroscopy: Modern Research. London: Academic press. 1985. V. III. P. 1–67.
   9. Camy-Peyret C., Flaud J.M. Vibration-rotation dipole moment operator for asymmetric rotors / K.N. Rao (ed.) // Molecular Spectroscopy: Modern Research. London: Academic press, 1985. V. III. P. 69–110.
10. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A. Effective potentials for H2O–He and H2O–Ar systems. Part I. Isotropic induction-dispersion potentials // Eur. Phys. J. D. 2017. V. 71, N 5. P. 108. DOI:10.1140/epjd/e2017-70685-9.
11. Radcig A.A., Smirnov B.M. Spravochnik po atomnoj i molekuljarnoj fizike. M.: Atomizdat, 1980. 240 p.
12. Starikov V.I. Ushirenie spektral'nyh linij vodjanogo para davleniem neona, kriptona i ksenona // Optika i spektroskopija. 2017. V. 123, N 1. P. 10–20.
13. Bykov A.D., Sinica L.N., Starikov V.I. Jeksperimental'nye i teoreticheskie metody v spektroskopii molekul vodjanogo para. Novosibirsk: Izd-vo SO RAN, 1999. 376 p.
14. Claveau C., Henry A., Hurtmans D., Valentin A. Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68. P. 273–298.
15. Claveau C., Valentin A. Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440 cm–1 spectral range // Mol. Phys. 2009. V. 107, N 1. P. 1417–1422.
16. Girshfelder Dzh.O., Kurtis Ch.F., Bred R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izd-vo inostr. literatury, 1961. 929 p.
17. Bouanich J.P. Site-site Lennard–Jones potential parameters for N2, O2, H2, CO and CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 47. P. 243–250.
18. Golubiatnikov G.Yu. Shifting and broadening parameters of the water 183 GHz line (313–220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature // J. Mol. Spectrosc. 2005. V. 230, iss. 2. P. 196–198.
19. Lisak D., Rusciano G., Sasso A. An accurate comparison of lineshape models on H2O lines in the spectral region around 3 mm // J. Mol. Spectrosc. 2004. V. 227, iss. 2. P. 162–171.
20. Bykov A.D., Lazarev V.V., Ponomarev Ju.N., Strojnova V.N., Tihomirov B.A. Sdvigi linij pogloshhenija H2O v polose n1 + 3n3, inducirovannye davleniem blagorodnyh gazov // Optika atmosf. i okeana. 1994. V. 7, N 9. P. 1207–1219.

Back