Vol. 31, issue 04, article # 1

Sinitsa L.N., Serdyukov V.I., Polovtseva E.R., Bykov A.D., Shcherbakov A.P. Study of the water vapor absorption spectrum in the visible region from 19480 to 20500 cm-1. // Optika Atmosfery i Okeana. 2018. V. 31. No. 04. P. 247–252 [in Russian].
Copy the reference to clipboard
Abstract:

The vibrational-rotational absorption spectrum of water vapor was recorded and analyzed in the visible region from 19480 to 20500 cm-1. The measurements were carried out at the IFS-125M Fourier spectrometer with a resolution of 0.05 cm-1 at a pressure of 26.3 mbar, a temperature of (24 ± 1) °C at an optical path 24 m long. We used a multipass White cell with a base length of 60 cm. The light-emitting diode was used as the radiation source. The signal-to-noise ratio was about 20000. As a result of the spectrum analysis, a list of more than 420 lines has been formed, which includes line centers and intensity and quantum vibrational-rotational identification. More than 220 vibrational-rotational energy levels of 21 upper vibrational states have been determined.

Keywords:

Fourier transform spectroscopy, absorption of water vapor, visible spectral range, parameters of spectral lines, energy levels

References:

   1. Tinetti G., Tennison J., Caitlin A., Griffith C. Water in exoplanets // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2749–2764.
   2. Bykov A.D., Sinica L.N., Starikov V.I. Jeksperimental'nye i teoreticheskie metody v spektroskopii vodjanogo para. Novosibirsk: Izd-vo Sib. otd. RAN, 1999. 376 p.
   3. Mecke R. Das Rotationsschwingungsspektrum des wasserdampfes. I // Z. Phys. 1933. V. 81, N 5–6. P. 313–331.
   4. Antipov A.B., Bykov A.D., Kapitanov V.A., Lopasov V.P., Makushkin Yu.S., Tolmachev V.I., Ulenikov O.N., Zuev V.E. Water-vapor absorption spectrum in the 0.59-mm region // J. Mol. Spectrosc. 1981. V. 89, N 2. P. 449–459.
   5. Camy-Peyret C., Flaud J.-M., Mandin J.-Y., Chevillard J.P., Brault J., Ramsay D.A., Vervloet M., Chauville J. The high-resolution spectrum of water vapor between 16500 and 25250 cm–1 // J. Mol. Spectrosc. 1985. V. 113, N 1. P. 208–228.
   6. Carleer M., Jenouvrier A., Vandaele A.-C., Bernath P.F., Merienne M.F., Colin R., Zobov N.F., Polyansky O.L., Tennyson J., Savin V.A. The near infrared, visible, and near ultraviolet overtone spectrum of water // J. Chem. Phys. 1999. V. 111. P. 2444–2450.
   7. Tolchenov R.N., Naumenko O., Zobov N.F., Shirin S.V., Polyansky O.L., Tennyson J., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Vandaele A.C. Water vapour line assignments in the 9250–26000 cm−1 frequency range // J. Mol. Spectrosc. 2005. V. 233, N 1. P. 68–76.
   8. Tennyson J., Bernath P., Brown L., Campargue A., Csaszar A., Daumont L., Gamache R., Hodges J., Naumenko O., Polyansky O., Rothman L., Vandaele A., Zobov N., Derzia A., Fabri C., Fazliev A., Furtenbacher T., Gordon I., Lod L., Mizus I. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 117. P. 29–58.
   9. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzicchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen L.H., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Muller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
10. Jacquinet-Husson N., Crepeau L., Armante R., Boutammine C., Chedin A., Scott N.A., Crevoisier C., Crevoisier C., Capelle V., Boone C., Poulet-Crovisier N., Barbe A., Campargue A., Benner D.C., Benilan Y., Bezard B., Boudon V., Brown L.R., Coudert L.H., Coustenis A., Dana V., Devi V.M., Fally S., Fayt A., Flaud J.-M., Goldman A., Herman M., Harris G.J., Jacquemart D., Jolly A., Kleiner I., Kleinbohl A., Kwabia-Tchana F., Lavrentieva N., Lacome N., Lyulin O.M., Mandin J.-Y., Maki A., Mikhailenko S., Miller C.E., Mishina T., Moazzen-Ahmadi N., Muller H.S.P., Nikitin A., Orphal J., Perevalov V., Perrin A., Petkie D.T., Predoi-Cross A., Rinsland C.P., Remedios J., Rotger M., Smith M.A.H., Sung K., Tashkun S., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J., Xu L.-H. The 2009 edition of the GEISA spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 15. P. 2395–2445.
11. URL: http://spectra.iao.ru (data obrashhenija: 14.05.2017).
12. URL: http://wadis.saga.iao.ru (data obrashhenija: 14.05.2017).
13. Serdyukov V.I., Sinitsa L.N., Vasilchenko S.S. Highly sensitive Fourier transform spectroscopy with LED sources // J. Mol. Spectrosc. 2013. V. 290. P. 13–17.
14. Serdjukov V.I. Novye vozmozhnosti vysokochuvstvitel'noj registracii spektrov pogloshhenija molekul v vidimoj oblasti spektra // Optika atmosf. i okeana. 2013. V. 26, N 9. P. 817–821.
15. Vasil'chenko S.S., Serdjukov V.I. Spektr izluchenija neona kak reper chastotnoj shkaly dlja spektrofotometrov // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 822–825; Vаsil’chenkо S.S., Serdyukov V.I. Emission spectrum of neon as a frequency reference for spectrophotometers // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 154–158.
16. Kruglova T.V., Shcherbakov A.P. Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines // Opt. Spectrosc. 2011. V. 111. P. 353–356.
17. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high-accuracy computed water line list // Mon. Not. R. Astron. Soc. 2006. V. 368. P. 1087–1094.
18. Bykov A.D., Naumenko O.V., Pshenichnikov A.M., Sinitsa L.N., Shcherbakov A.P. An expert system for identification of lines in vibrational-rotational spectra // Opt. Spectrosc. 2003. V. 94. P. 528–537.

Back