Vol. 30, issue 12, article # 8

Bazhenov O.E. Elevated humidity in the stratosphere as a gain factor of ozone depletion in Arctic according to Aura MLS observations. // Optika Atmosfery i Okeana. 2017. V. 30. No. 12. P. 1053-1058 [in Russian].
Copy the reference to clipboard

Analysis of Aura MLS data showed that the temperature in the stratosphere of Arctic was much lower than normal during the entire period of January–March 2011 in the altitude range 20–35 km. This had led to a considerable spread of polar stratospheric clouds (PSCs) that formed most intensely in periods and at altitudes of minimal temperatures (maximal temperature drops below PSC formation threshold). The main ozone losses were observed in March. They were due to a photochemical release of chlorine that avoided deactivation in view of nitrogen deficit caused by denitrification in the course of frequent dehydration events indicated by oscillations of the altitude of maximal humidity deviation from multiyear norm. Elevated humidity in the stratosphere had increased the threshold temperature of formation of PSCs that persisted until late March; this raised the threshold of chlorine activation and, thereby, delayed the chlorine deactivation, resulting in even higher level of overall ozone losses during March 2011.


stratosphere, temperature, humidity, ozone, satellite data, anomalous variations


  1. Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project: Report N 55. Geneva, Switzerland: WMO, 2014. 416 p.
  2. Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyro E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Parron-do M.C., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011 // Nature. 2011. V. 478, N 7370. P. 469–475. DOI: 10.1038/nature10556.
  3. Arnone E., Castelli E., Papandrea E., Carlotti M., Di-nelli B.M. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ ENVISAT using a 2-D tomographic approach // Atmos. Chem. Phys. 2012. V. 12. P. 9149–9165. DOI: 10.5194/ acp-12-9149-2012.
  4. Smyshljaev S.P., Pogorel'cev A.I., Galin V.Ja., Drobashevskaja E.A. Vlijanie volnovoj aktivnosti na gazovyj sostav stratosfery poljarnyh rajonov // Geomagnet. i ajeron. 2016. V. 56, N 1. P. 102–116.
  5. Khaykin S.M., Engel I.,Vömel H., Formanyuk I.M., Kivi R., Korshunov L.I., Krämer M., Lykov A.D., Meier S., Naebert T., Pitts M.C., Santee M.L., Spelten N., Wienhold F.G., Yushkov V.A., Peter T. Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water // Atmos. Chem. Phys. 2013. V. 13. P. 11503–11517. DOI: 10.5194/acp-13-11503-2013.
  6. Tabazadeh A., Santee M.L., Danilin M.Y., Pumph Quantifying denitrification and its effect on ozone recovery // Science. 2000. V. 288. P. 1407–1411.
  7. Toon O.B., Turco R.P. Polar stratospheric clouds and ozone depletion // Sci. Am. 1991. V. 264, P. 68–74. DOI:10.1038/scientificamerican0691-68.
  8. Lindenmaier R., Strong K., Batchelor R.L., Chipper-field M.P., Daffer W.H., Drummond J.R., Duck T.J., Fast H., Feng W., Fogal P.F., Kolonjari F., Manney G.L., Manson A., Meek C., Mittermeier R.L., Nott G.J., Perro C., Walker K.A. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011 // Atmos. Chem. Phys. 2012. V. 12. P. 3821–3835. DOI: 10.5194/acp-12-3821-2012.
  9. Hanson D., Mauersberger K. Vapor pressures of HNO3/H2O solutions at low temperatures // J. Phys. Chem. 1988. V. 92. P. 6167–6170.
  10. Carslaw K.S., Luo B., Peter T. An analytic expression for the composition of aqueous HNO3–H2SO4 stratospheric aerosols including gas phase removal of HNO3 // Geophys. Res. Lett. 1995. V. 22. P. 1877–1880.
  11. Sander S.P., Abbatt J., Barker J.R., Burkholder J.B., Friedl R.R., Golden D.M., Huie R.E., Kolb C.E., Kurylo M.J., Moortgat G.K., Orkin V.L., Wine P.H. Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation No. 17. JPL Publication 10-6, Pasadena, USA: Jet Propulsion Laboratory, 2011.
  12. Thölix L., Backman L., Kivi R., Karpechko A.Yu. Varia-bility of water vapour in the Arctic stratosphere // Atmos. Chem. Phys. 2016. V. 16. P. 4307–4321. DOI:10.5194/acp-16-4307-2016.
  13. Kirk-Davidoff D.B., Anderson J.G., Hintsa E.J., Keith D.W. The effect of climate change on ozone depletion through changes in stratospheric water vapour // Nature. 1999. V. 402. P. 399–401.
  14. Sinnhuber B.-M., Stiller G., Ruhnke R., von Clarmann T., Kellmann S., Aschmann J. Arctic winter 2010/2011 at the brink of an ozone hole // Geophys. Res. Lett. 2011. V. 38. P. L24814. DOI: 10.1029/ 2011GL049784.
  15. Khosrawi F., Urban J., Lossow S., Stiller G., Weigel K., Braesicke P., Pitts M.C., Rozanov A., Burrows J.P., Murtagh D. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature // Atmos. Chem. Phys. 2016. V. 16. P. 101–121. DOI: 10.5194/acp-16-101-2016.
  16. Bazhenov O.E., Burlakov V.D. Anomal'noe ponizhenie urovnja obshhego soderzhanija ozona nad Tomskom i severnoj territoriej Rossii v march–april 2011 year // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 915–919.
  17. Bazhenov O.E. Ocenka vlijanija vlazhnosti i temperatury v stratosfere na vozniknovenie ozonovoj anomalii vesnoj 2011 year v Arktike i nad severnoj territoriej Rossii // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 589–593.
  18. Kuttippurath J., Godin-Beekmann S., Lefèvre F., Nikulin G., Santee M.L., Froidevaux L. Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997 // Atmos. Chem. Phys. 2012. V. 12. P. 7073–7085. DOI: 10.5194/acp-12-7073-2012.
  19. Hanson D., Mauersberger K. Solubility and equilibrium vapor pressures of HCl dissolved in polar stratospheric cloud materials – Ice and the trihydrate of nitric acid // Geophys. Res. Lett. 1988. V. 15. P. 1507–1510. DOI: 10.1029/GL015i013p01507.
  20. McDonald A.J., George S.E., Woollands R.M. Can gravity waves significantly impact PSC occurrence in the Antarctic? // Atmos. Chem. Phys. 2009. V. 9. P. 8825–8840. https://DOI.org/10.5194/acp-9-8825-2009.