Vol. 30, issue 11, article # 11

Yakshina D.F., Golubeva E.N. The study of the subsurface temperature maximum formation in the Canada basin of the Arctic Ocean. // Optika Atmosfery i Okeana. 2017. V. 30. No. 11. P. 980–985 [in Russian].
Copy the reference to clipboard
Abstract:

The effects of penetrating short-wave radiation on the Arctic Ocean water temperature and sea ice state have been studied with an ocean–ice general circulation model. Numerical experiments show that during summer period, while the ice thickness is reduced to 2 m, the absorption of penetrating radiation results in the formation of the subsurface temperature maximum. This temperature maximum gradually decays during the fall season due to strong vertical mixing and heat flux to the ice and underlying waters.
 

Keywords:

ocean water stratification, climate-change, sea ice, Arctic Ocean, numerical modeling, penetrative radiation

References:

  1. Jackson J.M., Carmack E.C., McLaughlin F.A., Allen S.E., Ingram R.G. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008 // J. Geophys. Res. 2010. V. 115. Р. C05021. DOI: 10.1029/2009JC005265.
  2. Jackson J.M., Allen S.E., McLaughlin F.A., Woodgate R.A., Carmack E.C. Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993–2009: A basin in transition // J. Geophys. Res. 2011. V. 116. Р. C10008. DOI: 10.1029/2011JC007069.
  3. Steele M., Ermold W., Zhang J. Modeling the formation and fate of the near-surface temperature maximum in the Canadian Basin of the Arctic Ocean // J. Geophys. Res. 2011. V. 116. Р. C11015. DOI: 10.1029/2010JC006803.
  4. Golubeva E.N., Platov G.A. On improving the simulation of Atlantic water circulation in the Arctic Ocean // J. Geophys. Res. 2007. V. 112. DOI: 10.1029/2006JC003734.
  5. Golubeva E.N. Chislennoe modelirovanie dinamiki Atlanticheskih vod v Arkticheskom bassejne s ispol'zovaniem shemy QUICKEST // Vychisl. tehnol. 2008. V. 13, N 5. P. 11–24.
  6. Hibler W.D. A dynamic thermodynamic sea ice model // J. Phys. Oceanogr. 1979. V. 9, N 4. P. 815–846.
  7. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanogr. 1997. V. 27, N 9. P. 1849–1867.
  8. Bitz C.M., Lipscomb W.H. An energy-conserving thermodynamic model of sea ice // J. Geophys. Res. 1999. V. 104, N 15. P. 669–677.
  9. Lipscomb W.H., Hunke E.C. Modeling sea ice transport using incremental remapping // Mon. Weather. Rev. 2004. V. 132, N 6. P. 1341–1354.
  10. URL: http://www.gotm.net/ (last access: 12.04.2015).
  11. Canuto V.M., Howard A., Cheng Y., Dubovikov M.S. Ocean turbulence. Part I: One point closure model—momentum and heat vertical diffusivities // J. Phys. Oceanogr. 2001. V. 31. P. 1413–1426.
  12. Jerlov N.G. Optical oceanography. Amsterdam: Elsevier, 1968. 194 p.
  13. URL: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html (last access: 18.06.2014).
  14. URL: http://www.whoi.edu/page.do?pid=20781 (last access: 22.01.2016).

Back