Vol. 30, issue 11, article # 1

Aksenov V.P., Dudorov V.V., Kolosov V.V., Filimonov G.A. Generation of laser vortex beams with zero orbital angular momentum and nonzero topological charge. // Optika Atmosfery i Okeana. 2017. V. 30. No. 11. P. 905–909 [in Russian].
Copy the reference to clipboard

The structure of the interference field resulted from the combination of the wave fields of subbeams with apertures located on sides of a regular hexagon is studied. The field on each subapertures is a truncated Gaussian beam with the constant phase shift between neighbor subapertures so as the total phase incursion becomes equal to 2π when walking around the hexagon. It is ascertained that the total angular momentum of the beam synthesized in such a way is zero. There is a region in the central part of the beam where the integral of the density of orbital angular momentum gives the unit orbital angular momentum, and the circulation of the phase gradient at the boundary of this region gives unit topological charge.


vortex beam, coherent beam array, orbital angular momentum, topological charge


  1. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photon. 2015. V. 7, N 1. P. 66–106.
  2. Yao A.M., Padgett M.J. Orbital angular momentum: Origins, behavior and applications // Adv. Opt. Photon. 2011. V. 3. P. 161–204.
  3. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes // Phys. Rev. A. 1992. V. 45, N 11. P. 8185–8189.
  4. Aksenov V.P., Kolosov V.V., Filimonov G.A., Pogutsa C.E. Orbital angular momentum of a laser beam in a turbulent medium: Preservation of the average value and variance of fluctuations // J. Opt. 2016. V. 18. P. 054013.
  5. Lachinova S.L., Vorontsov M.A. Exotic laser beam engineering with coherent fiber-array systems // J. Opt. 2013. V. 15. P. 105501.
  6. Aksenov V.P., Dudorov V.V., Kolosov V.V. Vortex beam generation based on fiber array combining and propagation through a turbulent atmosphere // Proc. SPIE. 2016. V. 9979. P. 997908-1–997908-12.
  7. Dudorov V.V., Aksenov V.P., Kolosov V.V. Characterization of vortex beams synthesized on the basis of a fiber laser array // Proc. SPIE. 2015. V. 9680. CID: 96802D1-7.
  8. Aksenov V.P., Dudorov V.V., Kolosov V.V. Osobennosti vihrevyh puchkov, sformirovannyh matricej volokonnyh lazerov, i ih rasprostranenie v turbulentnoj atmosfere // Kvant. jelektron. 2016. V. 46, N 8. P. 726–732.
  9. Aksenov V.P., Dudorov V.V., Kolosov V.V., Levickij M.E., Rostov A.P., Simonova G.V., Filimonov G.A. Sistema kogerentnogo slozhenija izluchenija matricy volokonnyh lazerov. Formirovanie vihrevyh puchkov // Tez. dokl. XXIII Rabochej gruppy «Ajerozoli Sibiri», 29 november – 2 december 2016. Tomsk: Izd-vo IOA SO RAN, 2016. P. 108–109.
  10. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high energy laser beams through the atmosphere // Appl. Phys. A. 1976. V. 10, N 2. P. 129–160.
  11. Dudorov V.V., Kolosov V.V., Filimonov G.A. Algorithm for formation of an infinite random turbulent screen // Proc. SPIE. 2006. V. 6160. P. 61600R.
  12. Dudorov V.V., Kolosov V.V., Filimonov G.A. Algoritm formirovanija beskonechnyh turbulentnyh jekranov dlja modelirovanija dolgovremennyh lazernyh jeksperimentov v atmosfere // Izv. Tomskogo politehn. un-ta. Inzhiniring georesursov. 2006. V. 309, N 8. P. 85–89.
  13. Konjaev P.A., Tartakovskij E.A., Filimonov G.A. Chislennoe modelirovanie rasprostranenija opticheskih voln s ispol'zovaniem tehnologij parallel'nogo programmirovanija // Optika atmosf. i okeana. 2011. V. 24, N 5. P. 359–365; Kоnyaev P.А., Таrtаkоvskii Е.А., FilimоnоГ.А. Computer simulation of optical wave propagation with thr use of parallel programming // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 425–431.
  14. Aksenov V.P., Kolosov V.V., Filimonov G.A., Pogutsa Ch.E. Orbital angular momentum of laser beam in the turbulent medium: Asymptotic estimates and numerical simulation // Proc. SPIE. 2015. V. 9680. P. 96800-1–96800-6.
  15. Nye J.F. Natural focusing and the fine structure of light: Caustics and wave dislocations. Bristol, Philadelphia: Inst. Phys. Pub., 1999. 328 p.
  16. Gbur G., Tyson R.K. Vortex beam propagation through atmospheric turbulence and topological charge conservation // J. Opt. Soc. Am. A. 2008. V. 25. P. 225–230.
  17. Falic A.V. Bluzhdanie i fluktuacii intensivnosti fokusirovannogo lagerra-gaussova puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 763–771.
  18. Karman G.P., Beijersbergen M.W., van Duijl A., Woerdman J.P. Creation and annihilation of phase singularities in a focal field // Opt. Lett. 1997. V. 22. P. 1503–1505.