Vol. 30, issue 09, article # 6

Lysenko S.A. Atmospheric correction of multispectral satellite images based on the approximate model of the solar radiation transfer. // Optika Atmosfery i Okeana. 2017. V. 30. No. 09. P. 775–788 [in Russian].
Copy the reference to clipboard

A model of the solar radiation transfer in the Earth's atmosphere is developed for explicit calculations of the transfer characteristics of the atmosphere (reflectance, transmission, and spherical albedo) in its visible and near-IR transparency windows depending on the surface air pressure (or terrain elevation), the aerosol optical parameters, and angles indicating the position of the Sun and the satellite system with respect to the Earth's target. The model is based on the spectrally dependent approximations obtained using the atmospheric radiative transfer code DISORT. The sensitivity of underlying surface spectral albedo retrieval from top-of-atmosphere reflectance to vertical distribution of atmosphere optical parameters is investigated. The algorithm is designed for the atmospheric correction of multispectral satellite images with the developed model and applied to MERIS instrument (Medium Resolution Imaging Spectrometer). It is shown that accounting of optical properties of the atmosphere and adjacency effects in the processing of satellite images substantially improves visibility of underlining surface targets and rendering their spectral reflectance parameters.


multispectral satellite imagery, surface albedo, aerosol optical thickness, atmospheric correction, radiative transfer model, inverse problem


  1. Beljaev B.I., Katkovskij L.V. Opticheskoe distancionnoe zondirovanie. Minsk: BGU, 2006. 455 p.
  2. Atzberger C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs // Remote Sens. 2013. V. 5, N 2. P. 949–981.
  3. Hanes J.M. (ed.). Biophysical Applications of Satellite Remote Sensing. Heidelberg; New York; Dordrecht; London: Springer, 2014. 230 p.
  4. Vermote E.F., Tanré D., Deuzé J.L., Herman M., Morcrette J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview // IEEE Trans. Geosci. Remote Sens. 1997. V. 35, N 3. P. 675–686.
  5. Liang S., Fang H., Chen M. Atmospheric correction of Landsat ETM+ land surface imagery – Part I: Methods // IEEE Trans. Geosci. Rem. Sens. 2001. V. 39, N 11. P. 2490–2498.
  6. Kobayashi S., Sanga-Ngoie K. The integrated radiometric correction of optical remote sensing imageries // Int. J. Rem. Sens. 2008. V. 29, N 20. P 5957–5985.
  7. Vanonckelen S., Lhermitte S., Balthazar V., Rompaey A.V. Performance of atmospheric and topographic correction methods on Landsat imagery in mountain areas // Int. J. Rem. Sens. 2014. V. 35, N 13. P. 4952–4972.
  8. Gao B.-C., Davis C.O., Goetz A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean // Rem. Sens. Environ. 2009. V. 113, suppl. 1. P. S17–S24.
  9. Kokhanovsky A.A., Breon F.-M., Cacciari A., Carboni E., Diner D., Di Nicolantonio W., Grainger R.G., Grey W.M.F., Höller R., Lee K.-H., Li Z., North P.R.J., Sayer A.M., Thomas G.E., von Hoyningen-Huene W. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments // Atmos. Res. 2007. V. 85, N 3–4. P. 372–394.
  10. Levy R.C., Remer L., Mattoo S., Vermote E., Kaufman Y.J. Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance // J. Geophys. Res. D. 2007. V. 112, N 13. DOI: 10.1029/200JD007811.
  11. Von Hoyningen-Huene W., Freitag M., Burrows J.B. Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance // J. Geophys. Res. D. 2003. V. 108, N 9. (20 p.). DOI: 10.1029/2001JD002018.
  12. Guanter L., Gómez-Chova L., Moreno J. Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land // Rem. Sens. Environ. 2008. V. 112, N 6. P. 2898–2913.
  13. Katsev I.L., Prikhach A.S., Zege E.P., Ivanov A.P., Kokhanovsky A.A. Iterative procedure for retrieval of spectral aerosol optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements / A.A. Kokhanovsky, G. de Leeuw (eds.) // Satellite aerosol remote sensing over land. Berlin: Springer-Praxis Books, 2009. P. 101–134.
  14. Belov V.V., Tarasenkov M.V. O tochnosti i bystrodejstvii RTM-algoritmov atmosfernoj korrekcii sputnikovyh izobrazhenij v vidimom i UF-diapazonah // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 564–571; Bеlоv V.V., Таrаsеnkоv М.V. On the accuracy and operation speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges // Atmos. Ocean. Opt. 2014. V. 27, N 1. P. 54–61.
  15. Berk A., Conforti P., Kennett R., Perkins T., Hawes F., van den Bosch J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code // Proc. SPIE. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. 2014. V. 9088. P. 90880H-1–90880H-7.
  16. Ricchiazzi P., Yang S., Gautier C., Sowle D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere // Bull. Am. Meteorol. Soc. 1998. V. 79, N 10. P. 2101–2114.
  17. Schaaf C.B., Gao F., Strahler A.H., Lucht W., Li X., Tsang T., Strugnell N.C., Zhang X., Jin Y., Muller J.-P., Lewis P., Barnsley M., Hobson P., Disney M., Roberts G., Dunderdale M., Doll C., d’Entremont R.P., Hug B., Liang S., Privette J.L., Roy D. First operational BRDF, albedo nadir reflectance products from MODIS // Rem. Sens. Environ. 2002. V. 83, N 1–2. P. 135–148.
  18. Lyapustin A., Wang Y. The time series technique for aerosol retrievals over land from MODIS / А.A. Kokhanovsky, G. de Leeuw (eds.) // Satellite aerosol remote sensing over land. Berlin: Springer-Praxis Books, 2009. P. 69–99.
  19. Katsev I.L., Prikhach A.S., Zege E.P., Kokhanovsky A.A. Speeding up the aerosol optical thickness retrieval using analytical solutions of radiative transfer theory // Atmos. Meas. Tech. 2010. V. 3, N 5. P. 1403–1422.
  20. Seidel F.C., Kokhanovsky A.A., Schaepman M.E. Fast and simple model for atmospheric radiative transfer // Atmos. Meas. Tech. 2010. V. 3, N 4. P. 1129–1141.
  21. Katkovskij L.V. Parametrizacija uhodjashhego izluchenija dlja bystroj atmosfernoj korrekcii giperspektral'nyh izobrazhenij // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 778–784.
  22. Kokhanovsky A.A., Mayer B., Rozanov V.V. A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems // Atmos. Res. 2005. V. 73, N 1–2. P. 37–43.
  23. Vasil'ev A.V., Kuznecov A.D., Mel'nikova I.N. Approksimacija mnogokratno rassejannogo solnechnogo izluchenija v ramkah priblizhenija odnokratnogo rassejanija // Uch. zap. RGGMU. 2016. N 42. P. 94–103.
  24. Goddard Space Flight Center, AERONET. [Electronic resource]. URL: httpHYPERLINK "http://aeronet.gsfc.nasa.gov/"://HYPERLINK "http://aeronet.gsfc.nasa.gov/"aeronetHYPERLINK "http://aeronet.gsfc.nasa.gov/".HYPERLINK "http://aeronet.gsfc.nasa.gov/"gsfcHYPERLINK "http://aeronet.gsfc.nasa.gov/".HYPERLINK "http://aeronet.gsfc.nasa.gov/"nasaHYPERLINK "http://aeronet.gsfc.nasa.gov/".HYPERLINK "http://aeronet.gsfc.nasa.gov/"gov (last access: 14.10.2016).
  25. Hansen J.E., Travis L.D. Light scattering in planetary atmospheres // Space Sci. Rev. 1974. V. 16, N 4. P. 527–610.
  26. Liou K.N. An introduction to atmospheric radiation. Second edition. New York; London: Elsevier-Academic Press, 2002. 583 p.
  27. Abreu L.W., Anderson G.P. (eds.). The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. 1996. [Electronic resource]. URL: http://web.gps.caltech.edu/~vijay/pdf/mHYPERLINK "http://web.gps.caltech.edu/~vijay/pdf/%20modrept.pdf"oHYPERLINK "http://web.gps.caltech.edu/~vijay/pdf/%20modrept.pdf"drept.pdf (last access: 14.10.2016).
  28. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.-P., Chance K., Couderti L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Šimečková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Auwera J.V. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
  29. Serdyuchenko A., Gorshelev V., Weber M., Burrows J.P. New broadband high-resolution ozone absorption cross-sections. Bremen University, Bremen, Germany, 2011. [Electronic resource]. URL: http://www.spectroscopyeurope.com / articles / 55-articles / 3082-new-broadband-high-resolution-ozone-absorption-cross-sections (last access: 14.10.2016).
  30. Vermote E.F., El-Saleous N., Justice C.O., Kaufman Y.J., Privette J.L., Remer L., Roger J.C., Tanré D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation // J. Geophys. Res. D. 1997. V. 102, N 14. P. 17,131–17,141.
  31. Stamnes K., Tsay S.-C., Laszlo I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology (version 1.1, Mar 2000). [Electronic resource]. URL: http://www.meteo.physik.unimuenchen.de/~emde/lib/exe/fetch.php?media=teaching:radiative_transfer:disortreport1.1.pdf (last access: 14.10.2016).
  32. Cattrall C., Reagan J., Thome K., Dubovic O. Variability of aerosol spectral lidar and backscatter and extinction ratio of key aerosol types derived from selected Aerosol Robotic Network locations // J. Geophys. Res. D. 2005. V. 110, N 10. D10S11 (13 p.).
  33. United States Department of Agriculture. Global soil regions map. URL: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013 (last access: 14.10.2016).
  34. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER spectral library version 2.0 // Rem. Sens. Environ. 2009. V. 113, N 4. P. 711–715.
  35. Guanter L., Richter R., Kauffmann H. On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing // Int. J. Rem. Sens. 2009. V. 30, N 6. P. 1407–1424.
  36. Reinersman P.N., Carder K.L. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect // Appl. Opt. 1995. V. 34, N 21. P. 4453–4471.
  37. Duanabc S.-B., Licd Z.-L., Tanga B.-H., Wua H., Tanga R., Bi Y. Atmospheric correction of highspatial-resolution satellite images with adjacency effects: Application to EO-1 ALI data // Int. J. Rem. Sens. 2015. V. 36, N 19–20. P. 5061–5074.
  38. European Space Agency – MERIS Product Handbook. Issue 3.0, 1 August 2011. [Electronic resource]. URL: http://envisat.esa.int/handbooks/meris/CNTR.html (last access: 15.10.2016).
  39. Sentinel-3 OLCI User Guide. [Electronic resource]. URL: https: // sentinel.esa.int / web / sentinel / user-guides / sentinel-3-olci (last access: 15.10.2016).
  40. Vasil'ev A.V. Chislennoe modelirovanie intensivnosti mnogokratno rassejannogo solnechnogo izluchenija i proizvodnyh ot nee s uchetom sfericheskoj geometrii atmosfery (komp'juternyj kod SCATRD) // Vestn. SPbGU. 2006. Ser. 4: Fizika. Issue 3. P. 3–14.
  41. World Meteorological Organization. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. Switzerland, Geneva. Report WCP-112, WMO/TD-24. 1986. 60 p.
  42. Lysenko S.A., Kugejko M.M., Homich V.V. Mnogochastotnoe lidarnoe zondirovanie atmosfernogo ajerozolja v uslovijah informacionnoj neopredelennosti // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 404–413; Lysenkо S.А., Kugeikо М.М., Khоmich V.V. Multifrequency lidar sensing of atmospheric aerosol under conditions of information uncertainty // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 516–525.
  43. Bowker D.E., Davis R.E., Myriek D.L., Stacy K., Jones W.T. Spectral Reflectances of Natural Targets for Use in Remote Sensing Studies. NASA RP-1139. Hampton: NASA Langley Research Center, 1985. 184 p.
  44. Bhatti A.M., Rundquist D., Schalles J., Ramirez L., Nasu S. A comparison between above-water surface and subsurface spectral reflectances collected over inland waters // Geocarto Int. 2009. V. 24, N 2. P. 133–141.
  45. Yang W., Matsushita B., Chen J., Fukushima T. Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables // Rem. Sens. Environ. 2011. V. 115, N 5. P. 1247–1259.