Vol. 30, issue 09, article # 5

Lysenko S.A. Fast algorithm for retrieval of the atmospheric fine particulate matter maps from the multispectral satellite images. // Optika Atmosfery i Okeana. 2017. V. 30. No. 09. P. 763–774 [in Russian].
Copy the reference to clipboard
Abstract:

We describe a new algorithm for retrieving the atmospheric fine particulate matter total column (particles less than 1.0 and 2.5 μm) from multi-spectral satellite images in visible and IR regions of the electromagnetic spectrum. The algorithm is based on the regression relations between the top of atmosphere (TOA) reflectance, microphysical parameters of aerosol, and geometrical parameters of satellite scene. The regression equations are derived from the TOA reflectance calculations in the spectral channels of the satellite instrument for the ensemble of random generated parameters of the atmospheric radiative transfer model and the geometrical parameters of the satellite scene. Subsequently, this allows real-time mapping the fine particulate matter pollutions directly from the satellite images without solving ill-posed inverse problems of the solar radiation transfer in the atmosphere and aerosol light scattering. The proposed algorithm is implemented and tested for MERIS (Medium Resolution Imaging Spectrometer) satellite instrument. The comparison of the MERIS-retrieved total fine particulate matter content in the atmosphere with AERONET (Aerosol Robotic Network) data shows the standard deviation ~ 0.5 mg/cm2. The application of the developed algorithm to real-time monitoring of the regional and transboundary transport of the atmospheric particulate matter pollutants during the wildfires is demonstrated.

Keywords:

aerosol, fine particles, optical remote sensing, top of atmosphere reflectance, regressions, multi-spectral satellite images, operational data processing, maps of atmospheric particulate matter

References:

  1. Kondrat'ev K.Ja., Ivlev L.S., Krapivin V.F. Svojstva, processy obrazovanija i posledstvija vozdejstvij atmosfernogo ajerozolja: ot nano- do global'nyh masshtabov. SPb.: VVM, 2007. 807 p.
  2. Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vlijanie estestvennyh i antropogennyh ajerozolej na global'nyj i regional'nyj klimat // Ros. him. zh. (Zh. Ros. him. ob-va im. D.I. Mendeleeva). 2008. V. LII, N 5. P. 112–119.
  3. Silva R.A., West J.J., Zhang Y., Anenberg S.C., Lamarque J.F., Shindell T.D., Collins W.J., Dalsoren S., Faluvegi G., Folberth G., Horowitz L.W., Nagashima T., Naik V., Rumbold S., Skeie R., Sudo K., Takemura T., Bergmann D., Cameron-Smith P., Cionni I., Doherty R.M., Eyring V., Josse B., MacKenzie I.A., Plummer D., Righi M., Stevenson D.S., Strode S., Szopa S., Zeng G. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change // Environ. Res. Lett. 2013. V. 8, N 3. P. 034005 (11 p.).
  4. Aliev G.M.-A. Tehnika pyleulavlivanija i ochistki promyshlennyh gazov. M.: Metallurgija, 1986. 544 p.
  5. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. D. 2000. V. 105, N 16. P. 20,673–20,696.
  6. Kokhanovsky A.A., de Leeuw G. (eds.). Satellite aerosol remote sensing over land. UK, Chichester: Springer, Praxis, 2009. 398 p.
  7. Lopatin A., Dubovik O., Chaikovsky A., Goloub P., Lapyonok T., Tanré D., Litvinov P. Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm // Atmos. Meas. Tech. 2013. V. 6, N 8. P. 2065–2088.
  8. Lysenko S.A., Kugejko M.M. Nefelometricheskij metod izmerenij massovyh koncentracij gorodskih ajerozolej i ih respirabel'nyh frakcij // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 435–442; Lisenkо S.А., Kugeiko М.М. Nephelometric method for measuring mass concentrations of urban aerodol and their respirable fractions // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 587–595.
  9. Lysenko S.A., Kugejko M.M., Homich V.V. Mnogochastotnoe lidarnoe zondirovanie zagrjaznennosti atmosfery tverdymi chasticami s razdeleniem na respirabel'nye frakcii // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 70–79; Lisenkо S.А., Kugeiko М.М., Khоmich V.V. Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 288–297.
  10. Lysenko S.A., Kugejko M.M., Homich V.V. Mnogochastotnoe lidarnoe zondirovanie atmosfernogo ajerozolja v uslovijah informacionnoj neopredelennosti // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 404–413; Lisenkо S.А., Kugeiko М.М., Khоmich V.V. Multifrequency lidar sensing of atmospheric aerosol under conditions of information uncertainty // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 516–525.
  11. Von Hoyningen-Huene W., Yoon J., Vountas M., Istomina L.G., Rohen G., Dinter T., Kokhanovsky A.A., Burrows J.P. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS // Atmos. Meas. Tech. 2011. V. 4, N 2. P. 151–171.
  12. Guanter L., Gómez-Chova L., Moreno J. Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land // Rem. Sens. Environ. 2008. V. 112, N 6. P. 2898–2913.
  13. Katsev I.L., Prikhach A.S., Zege E.P., Kokhanovsky A.A. Speeding up the aerosol optical thickness retrieval using analytical solutions of radiative transfer theory // Atmos. Meas. Tech. 2010. V. 3, N 5. P. 1403–1422.
  14. Béal D., Baret F., Bacour C., Pavageau K., Gu X.F. A method for aerosol retrieval from the spectral variation in the visible and near infrared. Application to the MERIS sensor // Int. J. Rem. Sens. 2007. V. 28, N 3–4. P. 761–779.
  15. Zuev V.E., Naac I.Je. Obratnye zadachi lazernogo zondirovanija atmosfery. Novosibirsk: Nauka, 1982. 240 p.
  16. Sviridenkov M.A. Opredelenie harakteristik atmosfernogo ajerozolja po spektral'nym izmerenijam prozrachnosti i malouglovogo rassejanija // Optika atmosf. i okeana. 2001. V. 14, N 12. P. 1115–1118.
  17. Veretennikov V.V. Sovmestnoe opredelenie mikrostruktury i pokazatelja prelomlenija ajerozolja po dannym solnechnoj fotometrii // Optika atmosf. i okeana. 2007. V. 20, N 3. P. 214–221.
  18. Veretennikov V.V., Men'shhikova S.S. Ob ogranichenii integral'nyh ajerozol'nyh raspredelenij v obratnyh zadachah solnechnoj fotometrii // Optika atmosf. i okeana. 2011. V. 24, N 9. P. 759–764; Vеrеtеnnikоv V.V., Меn’shchikovа S.S. On restriction of integral aerosol distributions in inverse problems of solar photometry // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 44–50.
  19. Veretennikov V.V., Men'shhikova S.S. Mikrofizicheskaja jekstrapoljacija v zadache obrashhenija spektral'nyh izmerenij ajerozol'noj opticheskoj tolshhiny // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 880–886; Vеrеtеnnikоv V.V., Меn’shchikovа S.S. Microphysical extrapolation in the problem of inversion of spectral measurements of aerosol optical depth // Atmos. Ocean. Opt. 2012. V. 25, N 2. P. 135–141.
  20. Veretennikov V.V., Men'shhikova S.S. Osobennosti vosstanovlenija mikrostrukturnyh parametrov ajerozolja iz izmerenij ajerozol'noj opticheskoj tolshhiny. Part I. Metodika reshenija obratnoj zadachi // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 306–312; Vеrеtеnnikоv V.V., Меn’shchikovа S.S. Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 473–479.
  21. Vidot J., Santer R., Ramon D. Atmospheric particulate matter (PM) estimation from SeaWiFS imagery // Rem. Sens. Environ. 2007. V. 111, N 1. P. 1–10.
  22. Chu D.A., Zibordi G., Chern J.D., Mao J., Li C., Holben B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) // J. Geophys. Res. D. 2003. V. 108, N 21. P. 4661 (18 p.).
  23. Wang J., Christopher S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies // Geophys. Res. Lett. 2003. V. 30, N 21. P. 2095 (4 p.).
  24. Engel-Cox J.A., Holloman C.H., Coutant B.W., Hoff R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality // Atmos. Environ. 2004. V. 38, N 16. P. 2495–2509.
  25. Kokhanovsky A.A., Prikhach A.S., Katsev I.L., Zege E.P. Determination of particulate matter vertical columns using satellite observations // Atmos. Meas. Tech. 2009. V. 2, N 2. P. 327–335.
  26. Lysenko S.A., Kugejko M.M. Opredelenie koncentracii ajerozol'nyh chastic v vertikal'nom stolbe atmosfery po sputnikovym izmerenijam spektral'noj opticheskoj tolshhiny // Zh. prikl. spektroskopii. 2011. V. 78, N 5. P. 793–800.
  27. Dubovik O., Herman M., Holdak A., Lapyonok T., Tanré D., Deuzé J.L., Ducos F., Sinyuk A., Lopatin A. Statistically optimized inversional gorithm for enhanced retrieval of aerosol roperties from spectral multi-angle polarimetric satellite observations // Atmos. Meas. Tech. 2011. V. 4, N 5. P. 975–1018.
  28. Jeong U., Kim J., Ahn C., Torres O., Liu X., Bhartia P.K., Spurr R.J.D., Haffner D., Chance K., Holben B.N. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations // Atmos. Chem. Phys. 2016. V. 16, N 1. P. 177–193.
  29. Ivanov A.P., Kacev I.L., Prikhach A.S., Zege Je.P. Vosstanovlenie opticheskih harakteristik ajerozol'noj atmosfery i poverhnosti Zemli putem sovmestnoj obrabotki razlichnoj sputnikovoj informacii // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 215–223.
  30. Obuhov A.M. O statisticheski ortogonal'nyh razlozhenijah jempiricheskih funkcij // Izv. AN SSSR. Ser. Geofiz. 1960. V. 1, N 3. P. 432–439.
  31. Liou K.N. An introduction to atmospheric radiation. Second edition. New York; London: Academic Press, 2002. 583 p.
  32. Stamnes K., Tsay S.-C., Laszlo I. DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology (version 1.1, Mar 2000). [Electronic resource]. URL: http://www.meteo.physik.uni-muenchen.de/~emde/lib/exe/fetch.php?media=teaching:radiative_transfer:disortreport1.1.pdf (last access: 5.07.16).
  33. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent zemnoj atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
  34. Serdyuchenko A., Gorshelev V., Weber M., Burrows J.P. New broadband high-resolution ozone absorption cross-sections. [Electronic resource]. URL: http://www.spectroscopyeurope.com / articles / 55-articles / 3082-new-broadband-high-resolution-ozone-absorption-cross-sections (last access: 6.07.16).
  35. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.-P., Chance K., Couderti L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Šimečková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Auwera J.V. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
  36. Goddard Space Flight Center, AERONET. [Electronic resources]. URL: http://aeronet.gsfc.nasa.gov (last access: 6.07.16).
  37. Bohren G.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons, 1983. 544 p.
  38. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER spectral library version 2.0 // Rem. Sens. Environ. 2009. V. 113, N 4. P. 711–715.
  39. United States Department of Agriculture. Global soil regions map. [Electronic resource]. URL: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013 (last access: 6.07.16).
  40. Torres B., Dubovik O., Toledano C., Berjon A., Cachorro V.E., Lapyonok T., Litvinov P., Goloub P. Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations // Atmos. Chem. Phys. 2014. V. 14, N 2. P. 847–875.
  41. European Space Agency – MERIS Product Handbook. Issue 3.0, 1 August 2011. [Electronic resources]. URL: http://envisat.esa.int/handbooks/meris/CNTR.html (last access: 6.07.16).
  42. SENTINEL-3 OLCI User Guide. [Electronic resources]. URL: https://sentinel.esa.int/web/sentinel/user-guides/ sentinel-3-olci (last access: 08.07.16).
  43. Mishchenko M.I., Cairns B., Hansen J.E., Travis L.D., Burg R., Kaufman Y.J., Martins J.V., Shettle E.P. Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 88, N 1–3. P. 149–161.
  44. Otchet o nauchno issledovatel'skoj rabote. Institut fiziki im. B.I. Stepanova NAN Belarusi. 2006. [Jelektronnyj resurs]. URL: http://scat.bas-net.by/~lidarteam /Transboundary%20transport-ru/Report-2006.pdf (last access: 10.07.16).

Back