Vol. 30, issue 07, article # 10

Raspopova N.I. Investigation of the ro-vibrational energy structure of (0101, F1) and (0101, F2) states of 28SiH4 molecule. // Optika Atmosfery i Okeana. 2017. V. 30. No. 07. P. 616–620 [in Russian].
Copy the reference to clipboard

The high-resolution analysis of the ro-vibrational IR spectrum of the absorption bending bands ν2 + ν4 (F1) and ν2 + ν4 (F2) of the 28SiH4 molecule is performed with the SPHETOM software package. About 618 experimental transitions are assigned to ν2 + ν4 (F1) and ν2 + ν4 (F2) bands with Jmax = 8. Rotational, centrifugal distortion, tetrahedral splitting, and resonance interaction parameters for these vibrational bands are determined from the weighted fit of experimental line positions. The obtained set of parameters reproduces the initial experimental data with the accuracy closed to experimental uncertainties, drms = 8 × 10–4 cm1.


bending vibrations, overtones, tetrahedral splittings, resonance interactions


  1. Pierre G., Valentin A., Henry L. Le niveau de base du silane obtenu a partir de l'etude du spectre a transformee de Fourier de ν2 et ν4 // Can. J. Phys. 1984. V. 62. P. 254–259.
  2. Pierre G., Valentin A., Henry L. Etude par transformee de Fourier, du spectre, du silane dans la region de 1000 cm1. Analyse de la diade ν2 et ν4 // Can. J. Phys. 1986. V. 64. P. 341–350.
  3. Prinz H., Kreiner W.A., Pierre G. The silane isotopomers 29SiH4 and 30SiH4 constants of the ν24 dyad // Can. J. Phys. 1990. V. 68. P. 551–562.
  4. Prinz H., Kreiner W.A., Loete M., Jouvard J.M. 29SiH4 and 30SiH4: Dipole moment parameters of the ν24 dyad from Stark effect observations with laser sidebands // J. Mol. Spectrosc. 1990. V. 139. P. 30–38.
  5. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Kashirina N.V., Fomchenko A.L., Sydow C., Bauerecker S. High resolution study of MSiH4 (M = 28, 29, 30) in the dyad region: Analysis of line positions, intensities and half-widths // J. Quant. Spectrosc. Radiat. Transfer. 2017. DOI: 10.1016/j.jqsrt.2017.03.020.
  6. Cabana A., Gray D.L., Mills I., Robiette A.G. Vibration-rotation coupling between ν1 and ν3 in SiH4 // J. Mol. Spectrosc. 1977. V. 66. P. 174–176.
  7. Cabana A., Gray D.L., Robiette A.G., Pierre G. Analysis of the ν3 and ν1 infra-red bands of SiH4 // Mol. Phys. 1978. V. 36. P. 1503–1516.
  8. Allen W.D., Schaefer H.F. Geometrical structures, force constants, and vibrational spectra of SiH, SiH2, SiH3, and SiH4 // Chem. Phys. 1986. V. 108. P. 243–274.
  9. Chuprov L.A., Sennikov P.G., Tokhadze K.G., Ignatov S.K., Schrems O. High resolution Fourier-transform IR spectroscopic determination of impurities in silicon tetrafluoride and silane prepared from it // Inorg. Mater. 2006. V. 42. P. 924–931.
  10. Cochran A.L. Solar system science enabled with the next generation space telescope // Sci. NGST ASP Conf. Ser. 1998. V. 133. P. 188–197.
  11. Monnier J.D., Danchi W.C., Hale D.S., Tuthill P.G., Townes C.H. Mid-infrared interferometry on spectral lines. III. Ammonia and silane around IRC +10216 and VY canis majoris // Astrophys. J. 2000. V. 543. P. 868–879.
  12. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Sennikov P.G., Koshelev M.A., Velmuzhova I.A., Velmuzhov A.P., Bulanov A.D. High resolution study of MGeH4 (M = 76; 74) in the dyad region // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 144. P. 11–26.
  13. Koshelev M.A., Velmuzhov A.P., Velmuzhova I.A., Sennikov P.G., Raspopova N.I., Bekhtereva E.S., Gromova O.V., Ulenikov O.N. High resolution study of strongly interacting ν1(A1)/ν3(F2) bands of MGeH4 (M = 76; 74) // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 161–174.
  14. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Fomchenko A.L., Sennikov P.G., Koshelev M.A., Velmuzhova I.A., Velmuzhov A.P. First high resolution ro-vibrational study of the (0200), (0101) and (0002) vibrational states of MGeH4 (M = 76, 74) // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 199–218.
  15. Zheng J.-J., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., He S.-G., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. High resolution vibration-rotation spectrum of the D2O molecule in the region near the 2ν1 + ν2 + ν3 absorption band // Mol. Phys. 2001. V. 99. P. 931–937.
  16. Ulenikov O.N., Liu A.-W., Bekhtereva E.S., Gromova O.V., Hao L.-Y., Hu S.-M. On the study of high-resolution rovibrational spectrum of H2S in the region of 7300–7900 cm–1 // J. Mol. Spectrosc. 2004. V. 226. P. 57–70.
  17. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Bolotova I.B., Konov I.A., Horneman V.-M., Leroy C. High resolution analysis of the CO2 spectrum in the 2600–2900 cm1 region: 2ν3, ν2 + 2ν3 – ν2 and 2ν1 + ν2 bands // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 500–517.
  18. Ulenikov O.N., Hu S.-M., Bekhtereva E.S., Onopenko G.A., He S.-G., Wang X.-H., Zheng J.-J., Zhu Q.-S. High-resolution Fourier transform spectrum of D2O in the region near 0.97 mm // J. Mol. Spectrosc. 2001. V. 210. P. 18–27.
  19. Bykov A.D., Makushkin Yu.S., Ulenikov O.N. The vibrational analysis of H216O // J. Mol. Spectrosc. 1983. V. 99. P. 221–227.
  20. Ulenikov O.N., He S.-G., Onopenko G.A., Bekhtereva E.S., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. High-resolution study of the (ν1 + 12ν2 + ν3 = 3) polyad of strongly interacting vibrational bands of D2O // J. Mol. Spectrosc. 2000. V. 204. P. 216–225.
  21. Ulenikov O.N., Malikova A.B., Alanko S., Koivusaari M., Anttila R. High-resolution study of the 2ν5 hybrid band of the CHD3 molecule // J. Mol. Spectrosc. 1996. V. 179. P. 175–194.
  22. Ulenikov O.N., Sun F.-G., Wang X.-G., Zhu Q.-S. High resolution spectroscopic study of arsine: 3ν1 and 2ν1 + ν3 dyad: The tendency of symmetry reduction // J. Chem. Phys. 1996. V. 105. P. 7310–7315.
  23. Ulenikov O.N., Bekhtereva E.S., Albert S., Bauerecker S., Niederer H.M., Quack M. Survey of the high resolution infrared spectrum of methane (12CH4 and 13CH4): Partial vibrational assignment extended towards 12000 cm–1 // J. Chem. Phys. 2014. V. 141. P. 234302_1–234302_33.
  24. Ulenikov O.N., Bekhtereva E.S., Leroy C., Fomchenko A.L. On the “expanded local mode” approach applied to the methane molecule // J. Mol. Spectrosc. 2010. V. 264. P. 61–65.
  25. Ulenikov O.N., Bekhtereva E.S., Grebneva S.V., Hollenstein H., Quack M. High-resolution ro-vibrational analysis of vibrational states of A2 symmetry of the deuterated methane CH2D2: The levels ν5 and ν7 + ν9 // Mol. Phys. 2006. V. 104. P. 3371–3386.
  26. He S.-G., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. High-resolution Fourier transform spectrum of the D2O molecule in the region of the second triad of interacting vibrational states // J. Mol. Spectrosc. 2000. V. 200. P. 34–39.
  27. Ulenikov O.N., Ushakova G.A. Analysis of H2O molecule second hexade interacting vibrational states // J. Mol. Spectrosc. 1986. V. 117. P. 195–205.
  28. Bykov A.D., Lopasov V.P., Makushkin Yu.S., Sinitsa L.N., Ulenikov O.N., Zuev V.E. Rotation-vibration spectra of deuterated water vapor in the 9160–9390 cm1 region // J. Mol. Spectrosc. 1982. V. 94. P. 1–27.
  29. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Aslapovskaya Y.S., Ziatkova A.G., Sydow C., Maul C., Bauerecker S. First high resolution study of the interacting ν8 + ν10, ν6 + ν10, ν6 + ν7 bands and re-analysis of the ν7 + ν8 band of trans-d2-ethylene // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 184. P. 76–88.