Vol. 30, issue 06, article # 5

Dubtsov S.N., Dul'tseva G.G., Plokhotnichenko M.E., Koshlyakov P.V., Kobzeva T.V. Investigation of furfural photolysis and photochemical aerosol formation kinetics. // Optika Atmosfery i Okeana. 2017. V. 30. No. 06. P. 476–480 [in Russian].
Copy the reference to clipboard

The kinetics of furfural photolysis in air and nitrogen at different water vapor concentrations is studied. The photolysis rate constants of furfural are shown to be the same in air and in nitrogen. An increase in the water vapor concentration from 0 to 18 Torr results in an increase in the photolysis rate by a factor of 1.5. It has been experimentally shown that the yield of aerosol products for С5Н4О2 photolysis in air is independent of [Н2O] and equals to 1.8 ± 0.2%, while the yield increases from 1 to 2% during the photolysis in nitrogen as [Н2O] increases from 0 to 18 Torr. HCO and furil radicals formed during С5Н4О2 photolysis have been detected and identified using the spin-trapping technique; this proves the radical mechanism of С5Н4О2 photolysis. The partial analysis of aerosol products is performed. It is shown that aerosol particles consist of a complex mixture of oxidative ring cleavage compounds and a small amount of products containing furan ring. Based on the experimental data, a qualitative scheme of the chemical processes describing the formation of gaseous and aerosol products during furfural photolysis is suggested.


furfural, secondary organic aerosols, photochemical aerosol formation


   1.   Seinfeld J.H. Atmospehric Chemistry and Physics of Air Pollution. New York: John Wiley & Sons, 2005. 738 p.
   2. Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., van Dingenen R., Ervens B., Nenes A., Nielsen C.J., Swietlicki E., Putaud J.P., Balkanski Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Vignati E., Stephanou E.G., Wilson J. Organic aerosol and global climate modelling: A review // Atmos. Chem. Phys. Discas. 2004. V. 4. P. 5855–6024.
   3. De Alvarenga E.S., Carneiro V.M.T., Resende G.C., Picanço M.C., De Sá Farias E., Lopes M.C. Synthesis and insecticidal activity of an oxabicyclolactone and novel pyrethroids // Molecules. 2012. V. 17, N 12. P. 13989–14001. DOI: 10.3390/molecules171213989.
   4. Dul'ceva G.G., Dubcov S.N., Skubnevskaja G.I. Vklad fotookislenija al'degidov v obrazovanie atmosfernogo organicheskogo ajerozolja // Himija v interesah ustojchivogo razvitija. 2008. V. 16, N 3. P. 303–309.
   5. Dubtsov S.N., Dultseva G.G., Dultsev E.N., Skubnevskaya G.I. Investigation of aerosol formation during benzaldehyde photolysis // J. Phys. Chem. B. 2006. V. 110, N 1. P. 645–649.
   6. Dultseva G.G., Dubtsov S.N., Dultsev F.N. Water as a clustering agent in photolysis and photonucleation of benzaldehyde vapor // J. Phys. Chem. A. 2008. V. 112, N 23. P. 5264–5268.
   7.  Lazarenkov A.M., Horeva C.A. Ocenka vybrosov vrednyh veshhestv v okruzhajushhuju sredu ot istochnikov litejnyh cehov // Lit'e i metallurgija. 2012. N 3 (67). P. 74–78.
   8. Mihajlova Ju.S., Platonov A.D. Issledovanie vozdejstvij furfurola i formal'degida na okruzhajushhuju sredu pri sushke drevesiny buka i duba // Nauch. zh. KubGAU. 2011. N 70 (06). P. 1–12.
   9. McDonald A.G., Dare P.H., Gifford J.S., Steward D., Riley S. Assessment of air emissions from industrial kiln drying of Pinus radiata wood // Holz als Roh- und Werkstoff. 2002. V. 60, N 3. P. 181–190. DOI: 10.1007/ s00107–002-0293-1.
10. Kibet J., Khachatryan L., Dellinger B. Molecular products and radicals from pyrolysis of lignin // Environ. Sci. Technol. 2012. V. 46, N 23. P. 12994−13001.
11. Srithawirat T., Brimblecombe P. Seasonal variation of saccharides and furfural in atmospheric aerosols at a semi-urban site // Aerosol Air Quality Res. V. 15, N 3. DOI: 10.4209/aaqr.2014.07.0136.
12. Kesselmeier J., Staudt M. Biogenic volatile organic Compounds (VOC): An Overview on Emission, Physiology and ecology // J. Atmos. Chem. 1999. V. 33, N 1. P. 23–88.
13. Andreae M.O., Merlet P. Emission of trace gases and aerosols from biomass burning // Global Biogeochem. Cycles. 2001. V. 15, N 4. P. 955–966.
14. Colmenar I., Gonzalez S., Jimenez E., Martín P., Salgado S., Cabanas B., Albaladejo J. UV absorption cross sections between 290 and 380 nm of a series of furanaldehydes: Estimation of their photolysis lifetimes//Atmos. Environ. 2015. V. 103, N 1. P. 1–6.
15. Gandi A., Parsons J.M., Back R.A. The photochemistry of 2-furaldehyde vapour. II. Photodecomposition: direct phstolysis at 253.7 and 313 nm and Hg(3P,)-sensitized decompositon // Can. J. Chem. 1976. V. 54. P. 3095–3101.
16. Hiraoka H., Srinivasan R. Vapor Phase Photochemistry of Furfural // J. Chem. Phys. 1968. V. 48, N 5. P. 2185–2189.
17. Dubtsov S., Ovchinnikova T., Valiulin S., Chen X., Manninen H.E., Aalto P.P., Petäjä T. Laboratory verification of Aerosol Diffusion Spectrometer and the application to ambient measurements of new particle formation // J. Aerosol Sci. 2017. V. 105. P. 10–23. DOI: /10.1016/j.jaerosci.2016.10.015.
18. Seinfeld J.H., Pandis S.N. Atmospheric chemistry and physics: From air pollution to climate change. New York: John Wiley & Sons, 1997. 1152 p.
19. Dultseva G.G., Skubnevskaya G.I., Tikhonov A.Ya., Mazhukin D.G., Volodarsky L.B. Derivatives of dihydropyrazine-1,4-dioxide, 3-imidazoline 3-oxide, and r-phenyl nitrones with functional groups as new spin traps in solution and in the gas phase // J. Phys. Chem. 1996. V. 100, N 44. P. 17523–17527.