Vol. 30, issue 06, article # 2

Beresnev S.A., Vasiljeva M.S., Gryazin V.I., Kochneva L.B. Photophoresis of fractal-like soot aggregates: microphysical model, comparison with experiment and possible atmospheric applications. // Optika Atmosfery i Okeana. 2017. V. 30. No. 06. P. 457–462 [in Russian].
Copy the reference to clipboard

A microphysical model of photophoretic motion of soot aggregates is presented, which takes into account their fractal structure. Comparison with known experimental data is executed, and good qualitative and quantitative agreements are shown. Characteristics of photophoretic motion of fractal-like soot aggregates in the field of atmospheric radiation are calculated. For the model of fractal-like particles, the photophoretic effects with soot aerosol in the stationary atmosphere are the most pronounced in the upper troposphere – middle stratosphere.


soot aerosol, photophoresis, fractal-like particles, stratosphere


    1.  Beresnev S., Chernyak V., Fomyagin G. Photophoresis of a spherical particle in a rarefied gas // Phys. Fluids. A. 1993. V. 5, N 8. P. 2043–2052.
   2. Beresnev S.A., Kochneva L.B. Faktor asimmetrii pogloshhenija izluchenija i fotoforez ajerozolej // Optika atmosf. i okeana. 2003. V. 16, N 2. P. 134–141.
   3. Kovalev F.D. Jeksperimental'noe issledovanie fotoforeza v gazah: Avtoref. dis. … kand. fiz.-mat. nauk. Ekaterinburg: Ural'skij gos. un-t, 2003. 24 p.
   4. Karasev V.V., Ivanova N.A., Sadykova A.R., Kukhareva N., Baklanov A.M., Onischuk A.A., Kovalev F.D., Beresnev S.A. Formation of charged soot aggregates by combustion and pyrolysis: Charge distribution and photophoresis // J. Aerosol Sci. 2004. V. 35, N 3. P. 363–381.
   5. Beresnev S.A., Kochneva L.B., Zhuravleva T.B., Firsov K.M. Fotoforeticheskoe dvizhenie sazhevyh ajerozolej v pole korotkovolnovogo solnechnogo izluchenija // Optika atmosf. i okeana. 2012. V. 25, N 2. P. 175–180; Beresnev S.A., Kochneva L.B., Zhurаvlеvа Т.B., Firsоv K.М. Photophoretic motion of soot aerosol in field of shortwave solar radiation // Appl. Ocean. Opt. 2012. V. 25, N 4. P. 286–291.
   6. Beresnev S.A., Kochneva L.B., Zaharov V.I., Gribanov K.G. Fotoforez sazhevyh ajerozolej v pole teplovogo izluchenija Zemli // Optika atmosf. i okeana. 2011. V. 24, N 7. P. 597–600.
   7. Nyeki S., Colbeck I. Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates // Aerosol Sci. Technol. 1995. V. 23, N 2. P. 109–120.
   8. Beresnev S.A., Vasiljeva M.S., Gryazin V.I., Kochneva L.B. Photophoretic motion of fractal-like soot aggregates: Experiment and theory comparison // Proc. SPIE. 2014. V. 9292. Paper No. 92920Z.
   9. Sorensen C.M. The mobility of fractal aggregates: A review // Aerosol Sci. Technol. 2011. V. 45. P. 765–779.
10. Chang H., Charalampopoulos T.T. Determination of the wavelength dependence of refractive indices of flame soot // Proc. Roy. Soc. Lond. A. 1990. V. 430. P. 577–591.
11. Chylek P., Srivastava V., Pinnick R.G., Wang R.T. Scattering of electromagnetic waves by composite spherical particles: Experiment and effective medium approximations // Appl. Opt. 1988. V. 27, N 12. P. 2396–2404.
12. Evans W., Prasher R., Fish J., Meakin P., Phelan P., Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids // Int. J. Heat Mass Transfer. 2008. V. 51. P. 1431–1438.
13. Nan C.-W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance // J. Appl. Phys. 1997. V. 81, N 10. P. 6692–6699.
14. Teploprovodnost' tverdyh tel: Spravochnik / Pod red. A.S. Ohotina. M.: Jenergoatomizdat, 1984. 320 p.
15. Beresnev S.A., Vasiljeva M.S., Gryazin V.I., Kochneva L.B. Modeling of microphysical characteristics for fractal-like soot aggregates: The effective heat conductivity // Proc. SPIE. 2015. V. 9680. DOI: 10.117/12.2205019.
16. Beresnev S.A., Vasiljeva M.S., Gryazin V.I., Kochneva L.B. Photophoresis of fractal-like soot aggregates: Possible atmospheric applications // Proc. SPIE. 2016. V. 10035. Paper No. 10035-62.