Vol. 30, issue 06, article # 14

Zakharenko V.S., Daibova E.B. Surface properties of aerosol microparticles of calcium and magnesium hydroxides under ambient air. // Optika Atmosfery i Okeana. 2017. V. 30. No. 06. P. 536–539 [in Russian].
Copy the reference to clipboard

The adsorption and photosorption properties of microparticles of Mg(OH)2 and Ca(OH)2 in ambient air are studied. The composition of adsorption layer of microparticles is analyzed. The kinetics of photodesorption of molecules from the microparticle surfaces and interaction of Freon 22 (CHF2Cl) with its surfaces in the dark and under illumination are studied. The effect of weakly-bound CO displacement from the microparticle surfaces is revealed during the Freon 22 dark adsorption. It is suggested that the adsorbed CO is formed in the result of atmospheric CO2 reduction after the break of Mg–OH bonds. Calcium hydroxide CO is generated during interaction of calcium hydroxide with carbon dioxide on the microparticle surfaces in the presence of water.


calcium hydroxide, magnesium hydroxide, microparticles, surface properties, ambient air conditions, surface composition


   1. Kostov I. Mineralogija. M.: Mir, 1971. 584 p.
   2. Schmalz G., Arenholt-Bindslev. Biocompatibility of dental materials. Berlin: Springer, 2009. 379 p.
   3. Theocharis Ch., Yeates D. Changes tile surface properties of calcium hydroxide upon ageing. A spectroscopic and gas sorption study // Colloids and Surface. 1991. V. 58, N 2. P. 353–361.
   4. Montes-Hernandez G., Pommerol A., Renard F., Beck P., Quirico E., Brissaud O. In situ kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell // J. Chem. Eng. 2010. V. 161, N 2. P. 250–256.
   5. Zaharenko V.S., Filimonov A.P. Fotohimicheskie svojstva poroshkoobraznogo dioksida titana, poluchennogo iz monokristalla rutila v uslovijah okruzhajushhego vozduha // Optika atmosf. i okeana. 2009. V. 22, N 6. P. 611–614; Zakharenko V.S., Filimonov A.P. Photochemical properties of powdered titanium dioxide produced from monocrystal rutile under ambient air // Atmos. Ocean. Opt. 2009. V. 22, N 4. P. 493–498.
   6. Zaharenko V.S., Dajbova E.B. Fotohimicheskaja aktivnost' osazhdennogo ajerozolja, poluchennogo iz kristalla periklaza (MgO) v uslovijah okruzhajushhego vozduha // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 516–520.
   7. Mihajlovskij Ju.N. Atmosfernaja korrozija metallov. M.: Metallurgiya, 1989. 103 p.
   8. Duan Y., Sorescu D.C. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study // J. Chem. Phys. 2010. V. 133, iss. 7. P. 074508(1)–074508(11).
   9. Brimblkumb P. Sostav i himija atmosfery. M.: Mir, 1988. 351 p.
10. Zaharenko V.S., Parmon V.N. Fotadsorbcionnye i fotokataliticheskie processy, vlijajushhie na sostav atmosfery Zemli. II. Temnovaja i fotostimulirovannaja adsorbcija freona 22 (CHF2Cl) na MgO // Kinetika i kataliz. 2000. V. 41, N 6. P. 834–238.
11. Wu X.-F., Hu G.-H., Wang B.-B., Yang Y.-F. Synthesis and characterization of superfine magnesium hydroxide with monodispersity // J. Crystal Growth. 2008. V. 310, iss. 2. P. 457–461.