Vol. 30, issue 06, article # 1

Rakitin V.S., Elansky N.F., Pankratova N.V., Skorochod A.I., Dzhola A.V., Shtabkin Yu.A., Wang P., Wang Geng Chen., Vasilieva A.V., Makarova M.V., Grechko E.I. Investigation of trends of CO and CH4 total column over Eurasia based on the analysis of ground and orbital spectroscopic measurements. // Optika Atmosfery i Okeana. 2017. V. 30. No. 06. P. 449–456 [in Russian].
Copy the reference to clipboard

Trends of CO and CH4 total column (TC) are estimated from AIRS spectrometer data for the "Eurasia" domain (0–180° E, 0–85° N) for different time periods and seasons. The results are compared with similar estimates obtained from ground-based spectroscopic measurements at IAP RAS stations (ZSS, Zotto, and Beijing), st. Peterhof of St. Petersburg State University, and NDACC stations located in the test domain. According to the findings, the CO TC over Northern Eurasia generally decreased during the period 2003–2015 with a rate of 0.05–1.5%/year depending on the region, while the CH4 TC increased at a rate of 0.16–0.65%/year. After 2007, there is a trend toward an increase in CO TC in the summer and autumn months in most of mid- and high-latitude Eurasia background areas, as well as an increase in CH4 TC growth rate. Positive trends in CO cannot be explained by the growth of emissions from fires or anthropogenic emissions. Thus, one of possible causes may be changes in the entire global photochemical system occurring against the backdrop of global climate change, in particular, changes in the "sources/sinks" ratio for small atmospheric components.


carbon monoxide, methane, total column of components, atmospheric spectroscopy, satellite methods, background and contaminated areas, trends


1. IPCC (2013) Climate Change 2013: The Physical Science Basis (IPCC, 2013) / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge; New York.
   2. Pommier M., McLinden C.A., Deeter M. Relative changes in CO emissions over megacities based on observations from space // Geophys. Res. Lett. 2013. V. 40. P. 1–6. DOI: 10.1002/grl.50704.
   3. Dlugokencky E., Crotwell A., Masarie K., White J., Lang P., Crotwell M. NOAA measurements of long lived greenhouse gases // Asia-Pacific GAW Greenhouse Gases. Newletter. KMA, 2013. V. 4. P. 6–9.
   4. WMO/IGAC Impacts of Megacities on Air Pollution and Climate. GAW Rep. No. 205. 2012. 314 p.
   5. Novelli P.C., Masarie K.A., Lang P.M. Distributions and recent changes in carbon monoxide in the lower troposphere // J. Geophys. Res. 1998. V. 103, N 19. P. 015–033.
   6. Thompson A.M., Cicerone R.J. Possible perturbations to atmospheric CO, CH4, and OH // J. Geophys. Res. D. 1986. V. 91, N 10. P. 10853–10864. DOI: 10.1029/JD091iD10p10853.
   7. Wunch D., Wennberg P.O., Toon G.C., Keppel-Aleks G., Yavin Y.G. Emissions of greenhouse gases from a North American megacity // Geophys. Res. Lett. 2009. V. 36. DOI: 10.1029/2009GL039825.
   8. Golicyn G.S., Grechko E.I., Van G.Ch., Van P.S., Dzhola A.V., Emilenko A.S., Kopejkin V.M., Rakitin V.S., Safronov A.N., Fokeeva E.V. Issledovanie zagrjaznenija Moskvy i Pekina okis'ju ugleroda i ajerozolem // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 1. P. 1−12.
   9. Khalil M.A.K., Pinto J.P., Shearer M.J. Preface Atmospheric carbon monoxide // Chemosphere: Global Change Sci. 1999. V. 1, N 1–3. P. 1–375.
10. Bras'e G., Solomon S. Ajeronomija srednej atmosfery. L.: Gidrometeoizdat, 1987. 413 p.
11. Yurganov L.N., Duchatelet P., Dzhola A.V., Edwards D.P., Hase F., Kramer I., Mahieu E., Mellqvist J., Notholt J., Novelli P.C., Rockmann A., Scheel H.E., Schneider M., Schulz A., Strandberg A., Sussmann R., Tanimoto H., Velazco V., Drummond J.R., Gille J.C. Increased Northern hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space // Atmos. Chem. Phys. 2005. V. 5, N 2. P. 563–573.
12. Hausmann P., Sussmann R., Smale D. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): Top-down estimate from ethane and methane column observations // Atmos. Chem. Phys. 2016. V. 16. P. 3227–3244. DOI: 10.5194/acp-16-3227-2016.
13. Bousquet P., Ringeval B., Pison I.E.J., Brunke E.-G., Carouge C., Chevallier F., Fortems-Cheiney A., Frankenberg C., Hauglustaine D.A., Krummel P.B., Langenfelds R.L., Ramonet M., Schmidt M., Steele L.P., Szopa S., Yver C., Viovy N., Ciais P. Source attribution of the changes in atmospheric methane for 2006–2008 // Atmos. Chem. Phys. 2011. V. 11. P. 3689–3700. DOI: 10.5194/acp-11-3689-2011.
14. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser A., Heimann M., Hodson E.L., Houweling S., Josse B., Fraser P.J., Krummel P.B., Lamarque J.-F., Langenfelds R.L., Le Quéré C., Naik V., O’Doherty S., Palmer P.I., Pison I., Plummer D., Poulter B., Prinn R.G., Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D.T., Simpson I.J., Spahni R., Steele L.P., Strode S.A., Sudo K., Szopa S., van der Werf G.R., Voulgarakis A., van Weele M., Weiss R.F., Williams J.E., Zeng G. Three decades of global methane sources and sinks // Nat. Geosci. 2013. V. 6. P. 813–823. DOI: 10.1038/ngeo1955.
15. Yurganov L.N., Rakitin V., Dzhola A., August T., Fokeeva E., George M., Gorchakov G., Grechko E., Hannon S., Karpov A., Ott L., Semutnikova E., Shumsky R., Strow L. Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data // Atmos. Chem. Phys. 2011. V. 11. P. 7925–7942. DOI: 10.5194/acp-11-7925-2011.
16. Rakitin V.S., Fokeeva E.V., Grechko E.I., Dzhola A.V., Kuznecov R.D. Variacii soderzhanija okisi ugleroda v atmosfere Moskovskogo megapolisa // Izv. RAN. Fiz. atmosf. i okeana. 2011. V. 47, N 1. P. 64–72.
17. Wang P., Elansky N.F., Timofeev Yu.M., Wang Gengchen, Golitsyn G.S., Makarova M.V., Rakitin V.S., Stabkin Yu.A., Skorokhod A.I., Grechko E.I., Fokeeva E.V., Safronov A.N. A study of the long-term trends of CO total column for urban and background regions using ground-based and satellite spectroscopic measurements // Adv. Atmos. Sci. 2017. (In print).
18. Van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Mu M., Kasibhatla P.S., Morton D.C., DeFries R.S., Jin Y., van Leeuwen T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009) // Atmos. Chem. Phys. 2010. V. 10. P. 11707–11735. DOI: 10.5194/acp-10-11707-2010.
19. Vasileva A.V., Moiseenko K.B. Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data // Atmos. Environ. 2013. V. 71. P. 115–121.
20. Dianov-Klokov V.I., Yurganov L.N., Grechko E.I., Dzhola A.V. Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution // J. Atmos. Chem. 1989. V. 8, N 2. P. 139–151.
21. Makarova M.V., Poberovskij A.V., Osipov S.I. Vremennaja izmenchivost' obshhego soderzhanija CO v atmosfere vblizi Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2011. V. 47, N 6. P. 801–808.
22. Gavrilov N.M., Makarova M.V., Poberovskii A.V., Timofeyev Yu.M. Comparisons of CH4 ground-based FTIR measurements near Saint-Petersburg with GOSAT observations // Atmos. Meas. Technol. 2014. V. 7. P. 1003–1010. DOI: 10.5194/amt-7-1003-2014.
23. Sepúlveda E., Schneider M., Hase F., Barthlott S., Dubravica D., García O.E., Gomez-Pelaez A., González Y., Guerra J.C., Gisi M., Kohlhepp R., Dohe S., Blumenstock T., Strong K., Weaver D., Palm M., Sadeghi A., Deutscher N.M., Warneke T., Notholt J., Jones N., Griffith D.W.T., Smale D., Brailsford G.W., Robinson J., Meinhardt F., Steinbacher M., Aalto T., Worth D. Tropospheric CH4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements // Atmos. Meas. Technol. 2014. V. 7. P. 2337–2360. DOI: 10.5194/amt-7-2337-2014.
24. Kashin F.V., Kamenogradskij N.E., Grechko E.I., Dzhola A.V., Poberovskij A.V., Makarova M.A. Sravnenie razlichnyh metodik nazemnyh spektroskopicheskih izmerenij obshhego soderzhanija metana v atmosfere // Izv. RAN. Fiz. atmosf. i okeana. 2001. V. 37, N 3. P. 339–345.
25. Aumann H.H., Chahine M.T., Gautier C., Goldberg M., Kalnay E., McMillin L., Revercomb H., Rosenkranz P.W., Smith W.L., Staelin D., Strow L., Susskind J. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing systems // IEEE Trans. Geosci. Remote Sens. 2003. V. 41, N 2. P. 253–264.
26. McMillan W.W., Evans K.D., Barnet C.D., Maddy E.S., Sachse G.W., Diskin G.S. AIRS V5 CO retrieval with DACOM in situ measurements // IEEE Trans. Geosci. Remote Sens. 2011. V. 49. P. 1–12. DOI: 10.1109/TGRS.2011.2106505.
27. AIRS/AMSU/HSB Version 6 Level 2, Product User Guide. Ed. by E.T. Olsen. URL: http:disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L2_Product_User_Guide.pdf
28. Rakitin V.S., Shtabkin Ju.A., Elanskij N.F., Pankratova N.V., Skorohod A.I., Grechko E.I., Safronov A.N. Rezul'taty sopostavlenija sputnikovyh izmerenij obshhego soderzhanija CO, CH4 i CO2 c nazemnymi spektroskopicheskimi dannymi // Optika atmosf. i okeana. 2015. V. 28, N 9, P. 816–824; Rаkitin V.S., Shtаbkin Yu.А., Еlаnsky N.F., Pаnkrаtоvа N.V., SkоrоkhоА.I., Grеchkо Е.I., Sаfrоnоv А.N. Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents // Atmos. Ocean. Opt. 2015. V. 28, N 6, P. 816–824.
29. Thompson R.L., Stohl A., Lund Myhre C., Sasakawa M., Machida T., Aalto T., Dlugokencky E., Worthy D., Skorokhod A. Methane fluxes in the high northern latitudes estimated using a Bayesian atmospheric inversion // Geophys. Res. Abstr. 2016. V. 18. DOI: 10.5194/acp-17-3553-2017.
30. The World Data Centre for Greenhouse Gases (WDCGG). URL: http://ds.data.jma.go.jp/gmd/wdcgg/
31. Jiang Z., Worden J.R., Worden H., Deeter M., Jones D.B.A., Arellano A.F., Henze D.K. A fifteen year record of CO emissions constrained by MOPITT CO observations // Atmos. Chem. Phys. Discuss. 2016. DOI: 10.5194/acp-2016-811.