Vol. 30, issue 05, article # 12

Solodov A.M., Solodov A.A., Dеichuli V.M., Kuryak A.N., Osipov K.Yu., Petrova T.M., Ponomarev Yu.N., Ptashnik I.V. Modification of the experimental setup of FTIR spectrometer and 30-meter optical cell for measurements of weak selective and nonselective absorption. // Optika Atmosfery i Okeana. 2017. V. 30. No. 05. P. 431–434 [in Russian].
Copy the reference to clipboard

The description of the improvement of the experimental setup based on Fourier spectrometer Bruker IFS-125 and 30-meter multipath optical cell is given in the paper. The improvement includes the cell equipment with a system of automatic adjustment of the number of beam passes without its depressurization and ensures the cell work at high temperatures.


Fourier spectrometer, multiple-pass cell, absorption spectrum


  1. Clough S.A., Iacono M.J., Moncet J-L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor // J. Geophys. Res. 1992. V. 97, N 14. Р. 15761–15785.
  2. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33, N 3–4. Р. 535–555.
  3. Ptashnik I.V. Kontinual'noe pogloshhenie vodjanogo para – kratkaja predystorija i sovremennoe sostojanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  4. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-μm atmospheric windows // J. Dir. Energy. 2006. V. 2, N 2. P. 151–161.
  5. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M, Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements. // J. Geophys. Res. D. 2011. V. 116. P. 16305-1–16305-16.
  6. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. Р. 23–35.
  7. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. Р. 381–391.
  8. Mondelain D., Vasilchenko S., Cermak P., Kassi S., and Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 mm // Phys. Chem. Chem. Phys. 2015. V. 17. P. 17762–17770.
  9. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows-current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208.
  10. Burch D., Alt R. Continuum absorption by H2O in the 700–1200 and 2400–2800 cm1 windows // Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL. (1984). 31 p.
  11. Petrova T.M., Ponomarev Ju.N., Solodov A.A., Solodov A.M., Boldyrev N.Ju. Spektrometricheskij kompleks dlja issledovanija spektrov selektivnogo i neselektivnogo pogloshhenija gazov v shirokom spektral'nom diapazone // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 430–435; Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Boldyrev N.Yu. Spectrometric complex for investigation of spectra of selective and nonselective gas absorption in a wide spectral range // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 400–405.
  12. Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M., Naumenko O.V. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 253–260.
  13. Ponomarev Ju.N., Tyryshkin I.S. Uvelichenie chuvstvitel'nosti i otnoshenija signal-shum v lazernom spektrofotometre s 30-metrovoj pogloshhajushhej kjuvetoj // Optika atmosf. i okeana. 2003. V. 16, N 11. P. 1021–1024.