Vol. 30, issue 03, article # 2

Ivanov N.G., Losev V.F. Kerr nonlinearity effect on femtosecond radiation pulse filamentation in air. // Optika Atmosfery i Okeana. 2017. V. 30. No. 03. P. 198–203 [in Russian].
Copy the reference to clipboard

The filamentation conditions of a femtosecond laser pulse by its focusing in air are investigated experimentally and theoretically. A good agreement is observed between experimental and calculated data when neglecting the filament plasma. It is shown that at low numerical aperture (NA ≤ 2.15 × 10–3), a Kerr nonlinearity plays a fundamental role in the formation, existence, and termination of a filament. At the initial stage, the Kerr effect leads to the beam self-focusing and emergence of the filament; at the final stage, to radiation defocusing and sharp decrease in its axial intensity due to the beam wave front distortions. In the case of aberration focusing, a spatial quasi-soliton is formed after a visible filament due to the balance between Kerr self-focusing and diffraction extending. The quasisoliton is a source of the directional white supercontinuum.


Kerr nonlinearity, filamentation, focusing, supercontinuum


  1. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75
  2. Wille H., Rodriguez M., Kasparian J.,  Mondelain D., Yu J., Mysyrowicz A., Sauerbrey R., Wolf J.P., Wöste L.  Teramobile: A mobile femtosecond-terawatt laser and detection system // Eur. Phys. J. 2002. V. 20, N 3. P. 183–190.
  3. Kasparian J., Rodriguez M., Méjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., Andre Y.B., Mysyrowicz A., Sauerbrey R., Wolf J.P., Wöste L. White-light filaments for аtmospheric аnalysis // Science. 2003. V. 301, N 5629. P. 61–64.
  4. Béjot P., Bonacina L., Extermann J., Moret M., Wolf  J.P., Ackermann R., Lascoux N., Salamé R., Salmon R.E., Kasparian J., Bergé L., Champeaux S., Guet C. Blanchot N., Bonville O., Boscheron A., Canal P., Castaldi M., Hartmann O., Lepage C., Marmande L., Mazataud E., Mennerat G., Patissou L., Prevot V., Raffestin D., Ribolzi J.  32 Terawatt atmospheric white-light laser // Appl. Phys. Lett. 2007. V. 90. P. 151106.
  5. Geints Y.E., Zemlyanov A.A. On the focusing limit of high-power femtosecond laser pulse propagation in air // Eur. Phys. J. D. 2009. V. 55. P. 745–754.
  6. Geints Y.E., Zemlyanov A.A. Self-focusing of a focused femtosecond laser pulse in air // Appl. Phys. B. 2010. V. 101, N 4. P. 735–742.
  7. Geints Y.E., Bulygin A.D., Zemlyanov A.A. Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays //Appl. Phys. B. 2012. V. 107, N 1. P. 243–255.
  8. Gejnc Ju.Je., Zemljanov A.A., Kabanov A.M., Matvienko G.G., Stepanov A.N. Samovozdejstvie ostrosfokusirovannogo femtosekundnogo lazernogo izluchenija v vozduhe v rezhime odinochnoj i mnozhestvennoj filamentacii. Laboratornye i chislennye jeksperimenty // Optika atmosf. i okeana. 2009. V. 22, N 2. P. 119–125; Geints Y.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Stepanov A.N. Self-action of tightly focused femtosecond laser radiation in air in a filamentation regime: Laboratory and numerical experiments // Atmos. Ocean. Opt. 2009. V. 22, N 2. P. 150–157.
  9. Gejnc Ju.Je., Zemljanov A.A., Ionin A A., Mokrousova D.V., Seleznev L.V., Sinicyn D.V., Sunchugasheva E.S. Postfilamentacionnoe rasprostranenie moshhnyh lazernyh impul'sov v vozduhe v rezhime uzkonapravlennyh svetovyh kanalov // Kvant. jelektron. 2016. V. 46, N 11. P. 1009–1014.
  10. Théberge F., Lassonde P., Payeur S., Châteauneuf M., Dubois J., Kieffer J.C. Efficient spectral-step expansion of a filamenting laser pulse // Opt. Lett. 2013. V. 38, N 9. P. 1576–1578.
  11. Lim K., Durand M., Baudelet M., Richardson M. Transition from linear- to nonlinear-focusing regime in filamentation // Sci. Rep. 2014. V. 4, N 7217.
  12. Ivanov N.G., Losev V.F., Prokop'ev V.E. Study of the population inversion mechanisms and superradiance on transitions of molecular nitrogen ions in the filament // Proc. SPIE. 2015. V. 9810. P. 98100L.
  13. Aközbek N., Trushin S.A., Baltǔska A., Fuß W., Goulielmakis E., Kosma K., Krausz F., Panja S., Uiberacker M., Schmid W.E., Becker A., Scalora M., Bloemer M. Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses // New J. Phys. 2006. V. 8, N 177. P. 25619–2 (1–12).
  14. Théberge F., Liu W. Luo Q., Chin S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses // Appl. Phys. B. 2005. V. 80. P. 221–225.
  15. Garanin S.G., Epatko I., L'vov L., Serov R.V., Sukharev S. Self-focusing suppression in a system of two nonlinear media and a spatial filter // Quant. Electron. 2007. V. 37, N 12. P. 1159–1165.
  16. Menzel R. Photonics, Linear and Nonlinear Interactions of Laser Light and Matter. Berlin; Heidelberg; New York: Springer, 2007. P. 211.
  17. Marburger J.H. Self-focusing: Theory // Prog. Quant. 1975. V. 4. P. 35.
  18. Théberge F., Liu W., Simard P.T., Becker A., Chin S.L.  Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing // Phys. Rev. E. 2006. V.74. P.036406 (1–7).