Vol. 30, issue 02, article # 10

Virolainen Ya.A., Timofeev Yu.M., Poberovsky A.V., Polyakov A.V., Shalamyansky A.M. The empirical assessment of the errors of different instrumentation for total ozone measurements. // Optika Atmosfery i Okeana. 2017. V. 30. No. 02. P. 170–176 [in Russian].
Copy the reference to clipboard
Abstract:

The knowledge of the errors of measurement methods is very important for the assessment of the quality of experimental data. We compare the results of various measurements of total ozone content (TOC) near St. Petersburg between 2009 and 2015. We considere the TOC datasets of ground-based measurements in Voeykovo (Dobson spectrophotometer and M-124 ozonometer) and in Peterhof (Bruker 125HR spectrometer) as well as OMI and IASI satellite measurements. With the aim to assess the errors of the each individual method, we formed three datasets of coincident TOC measurements, depending on the number of comparisons and different criteria for selection. First, we calculated the means and the standard deviation from the means for the TOC differences in pairs of coincident datasets. Second, under the assumption of a horizontally homogeneous and stationary ozone field during each day of measurements, we assessed the random and systematic errors of the individual methods. The mean random error of the TOC measurements totals 2.9 ± 0.5%, 2.8 ± 0.7%, 1.2 ± 0.2%, and 1.4 ± 0.1% for IASI, M-124, OMI, and Bruker 125HR, respectively. The systematic error relative to the standard Dobson measurements amounts to –1.7% and –2.1% for OMI and IASI, respectively, and is equal to + 0.5% and + 2.1% for M-124 and Bruker 125HR, respectively. OMI and Bruker 125HR TOC measurement errors are resistant to atmospheric condition, whereas errors of IASI and M-124 TOC measurements are highly dependent on the state of atmosphere.

Keywords:

atmospheric ozone, errors, validation, IASI, OMI, М-124, Bruker 125HR, Dobson

References:

  1. Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion. Global Ozone Research and Monitoring Project. Report N 56. Geneva: WMO, 2014. 88 pp.
  2. Timofeev Ju.M. Sputnikovye metody issledovanija gazovogo sostava atmosfery (obzor) // Izv. RAN. Fiz. atmosf. i okeana. 1989. V. 26, N 5. P. 451–472.
  3. Hassler B., Petropavlovskikh I., Staehelin J., August T., Bhartia P.K., Clerbaux C., Degenstein D., Mazière M.D., Dinelli B.M., Dudhia A., Dufour G., Frith S.M., Froi-devaux L., Godin-Beekmann S., Granville J., Harris N.R.P., Hoppel K., Hubert D., Kasai Y., Kurylo M.J., Kyrölä E., Lambert J.-C., Levelt P.F., McElroy C.T., McPeters R.D., Munro R., Nakajima H., Parrish A., Raspollini P., Remsberg E.E., Rosenlof K.H., Rozanov A., Sano T., Sasano Y., Shiotani M., Smit H.G.J., Stiller G., Tam-minen J., Tarasick D.W., Urban J., van der A R.J., Veefkind J.P., Vigouroux C., von Clarmann T., von Savigny C., Walker K.A., Weber M., Wild J., Zawodny J.M. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability // Atmos. Meas. Tech. 2014. V. 7, N 5. P. 1395–1427.
  4. Balis D., Kroon M., Koukouli M.E., Brinksma E.J, Labow G., Veefkind J.P., McPeters R.D. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations // J. Geophys. Res. 2007. V. 112, N D24S46. DOI:10.1029/2007JD008796.
  5. Timofeyev Y., Virolainen Y., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Mol. Spectr. 2016. V. 323. May 2016. P. 2–14.
  6. Virolainen Ya.A., Timofeev Yu.M., Poberovskii A.V. Intercomparison of satellite and ground-based ozone total column measurements // Izv., Atmos. Ocean. Phys. 2013. V. 49, N 9. P. 993–1001.
  7. Virolainen Y.A., Timofeyev Y.M., Polyakov A.V., Ionov D.V., Poberovsky A.V. Intercomparison of satellite and ground-based measurements of ozone, NO2, HF, and HCl near Saint Petersburg, Russia // Int. J. Remote Sens. V. 35, N 15. P. 5677–5697.
  8. McPeters R.D., Kroon M., Labow G., Brinksma E.J., Balis D., Petropavlovskikh I., Veefkind J.P., Bhartia P.K., Levelt P.F. Validation of the Aura Ozone Monitoring Instrument Total Column Ozone Product // J. Geophys. Res. 2008. V. 113. N D15S14. DOI: 10.1029/2007JD008802.
  9. Ialongo I., Casale G.R., Siani A.M. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station // Atmos. Chem. Phys. 2008. V. 8, N 12. P. 3283–3289.
  10. Ning Т., Wang J., Elgered G., Dick G., Wickert J., Bradke M., Sommer M., Querel R., Smale D. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations // Atmos. Meas. Tech. 2016. V. 9, N 1. P. 79–92.
  11. Ionov D.V., Kalinnikov V.V., Timofeev Ju.M., Zajcev N.A., Virolajnen Ja.A., Koscov V.S., Poberovskij A.V. Sravnenija radiofizicheskih i opticheskogo IK nazemnyh metodov izmerenij integral'nogo soderzhanija vodjanogo para // Izv. vuzov. Radiofiz. 2016 (V pechati).
  12. Hase F., Hannigan J.W., Coffey M.T., Goldman A., Höpfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 87, N 1. P. 25–52.
  13. Komhyr W.D., Evans R.D. Operations handbook – ozone observations with a Dobson spectrophotometer. Geneva: WMO, 1980 (revised 2008). http://www. wmo.int/pages/prog/arep/gaw /documents/GAW183-Dobson-WEB.pdf).
  14. Shalamjanskij A.M. Ozonometricheskaja set' SNG // Meteorol. i gidrol. 1993. N 9. P. 100–104
  15. Levelt P.F., Van Den Oord G.H.J., Dobber M.R., Malkki A., Visser H., De Vries J., Stammes P., Lundell J.O.V., Saari H. The Ozone Monitoring Instrument // IEEE Trans. Geosci. Remote Sens. 2006. V. 44. P. 1093–1101.
  16. Bhartia P.K., Wellemeyer C.W. OMI TOMS‒V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document: OMI Ozone Products. V. 2. ATBD‒OMI‒02, version 2.0. 2002. URL: http://eospso.gsfc.nasa.gov/ eos_homepage/for_scientists/atbd/docs/OMI/ATBD- OMI-02.pdf
  17. Clerbaux C., Boynard A., Clarisse L., George M., Hadji- Lazaro J., Herbin H., Hurtmans D., Pommier M., Razavi A., Turquety S., Wespes C., Coheur P.-F. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder // Atmos. Chem. Phys. 2009. V. 9, N 16. P. 6041–6054.
  18. Dufour G., Eremenko M., Griesfeller A., Barret B., LeFlochmoën E., Clerbaux C., Hadji-Lazaro J., Coheur P.-F., Hurtmans D. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes // Atmos. Meas. Tech. 2012. V. 5, N 3. P. 611–630.
  19. Virolajnen Ja.A., Timofeev Ju.M., Poberovskij A.V., Eremenko M., Djufor G. Opredelenie soderzhanija ozona v razlichnyh slojah atmosfery s pomoshh'ju nazemnoj Fur'e-spektrometrii // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 2. P. 191–200.
  20. Anton M., Lopez M., Vilaplana J.M., Kroon M., McPe-ters R., Baсуn M., Serrano A. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula // J. Geophys. Res. 2009. V. 114, N D14307. DOI: 10.1029/ 2009JD012003.
  21. Viatte C., Schneider M., Redondas A., Hase F., Eremenko M., Chelin P., Flaud J.-M., Blumenstock T., Orphal J. Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments // Atmos. Meas. Tech. 2011. V. 4, N 3. P. 535–546.
  22. Kondrat'ev K.Ja., Timofeev Ju.M. Meteorologicheskoe zondirovanie atmosfery iz kosmosa. L.: Gidrometeoizdat, 1978. 280 p.

Back