Vol. 30, issue 01, article # 7

Shalygina I.Yu., Nahaev M.I., Kuznetsova I.N., Bеrеzin E.V., Konovalov I.B., Blinov D.V., Kirsanov A.A. Comparison of the ground concentration of the polluting substances calculated by means of xtm with data of measurements in the Moscow region. // Optika Atmosfery i Okeana. 2017. V. 30. No. 01. P. 53-59 [in Russian].
Copy the reference to clipboard
Abstract:

Comparisons of model forecasts (XTM CHIMERE and COSMO-RU7-ART) air pollution with data of measurements in Moscow in 2015 are presented. Both HTM use predictive fields of meteorological sizes according to model of the atmosphere of COSMO-RU7. It is established that models underestimate average daily concentration of PM10 and predict with an error on the average of 0,01–0,02 mg of m–3. Concentration of dioxide of XTM COSMO-RU7-ART nitrogen is counted with a margin error on the average by 0,01–0,02 mg of m3, CHIMERE – 0,02–0,03 mg of m–3 (summer of 0,05–0,08 mg of m–3), systematically overestimating NO2. Most often COSMO-RU7-ART underestimates concentration of carbon monoxide (by 0,1–0,2 mg of m–3, a daily maximum on 0,4–0,6 mg of m–3); CHIMERE, on the contrary, systematically overestimates WITH (on 0,2–0,35 mg of m–3, it is frequent on 0,4–0,5 mg of m–3 in the summer). Some results of experiments about influence of a way of definition of height of the planetary boundary layer (PBL) on model calculations of concentration of CO are discussed. PBL paid off: a) directly in XTM CHIMERE, b) in COSMO-RU7.

Keywords:

modeling of air pollution, chemistry-transport model CHIMERE, chemistry-transport model COSMO-RU7-ART, the height of the boundary layer

References:

  1. Kukkonen J., Olsson T., Schultz D.M., Baklanov A., Klein T., Miranda A.I., Monteiro A., Hirtl M., Tarvainen V., Boy M., Peuch V.-H., Poupkou A., Kioutsioukis I., Finardi S., Sofiev M., Sokhi R., Lehtinen K.E.J., Karatzas K., R. San Joseґ, Astitha M., Kallos G., Schaap M., Reimer E., Jakobs H.,  Eben K. A review of operational, regional-scale, chemical weather forecasting models in Europe // Atmos. Chem. Phys. 2012. V. 12, iss. 1. P. 1–87.
  2. Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., Stevenson D.S., Tarasova O., Thouret V., von Schneidemesser E., Sommariva R., Wild O., Williams M.L. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer // Atmos. Chem. Phys. 2015. V. 15, iss. 15. Р. 8889–8973.
  3. Vil'fand R.M., Kuznecova I.N., Shalygina I.Ju., Zvjagincev A.M., Nahaev M.I., Zaharova P.V., Lapchenko V.A. Monitoring i prognozirovanie kachestva vozduha v Moskovskom regione // Biosfera. 2014. V. 6, N 4. P. 339–351.
  4. Nahaev M.I., Berezin E.V., Shalygina I.Ju., Kuznecova I.N., Konovalov I.B., Blinov D.V., Lezina E.A. Jeksperimental'nye raschety koncentracij RM10 i SO kompleksom modelej CHIMERE i COSMO-RU7 // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 569–578.
  5. Nahaev M.I., Berezin E.V., Shalygina I.Ju., Kuznecova I.N., Konovalov I.B., Blinov D.V. Prognozirovanie koncentracij zagrjaznjajushhih veshhestv v atmosfere s primeneniem himicheskoj transportnoj modeli CHIMERE i modeli COSMO-Ru7 // Trudy Gidrometcentra Rossii. 2015. Iss. 357. P. 146–164.
  6. Kuznecova I.N., Shalygina I.Ju., Zaharova P.V., Lezina E.A., Konovalov I.B. Opyt primenenija chislennyh modelej s vysokim prostranstvenno-vremennym razresheniem dlja prognoza processov v atmosfernom pogranichnom sloe i zagrjaznenija prizemnogo vozduha // Tezisy dokladov VII Vserossijskogo meteorologicheskogo s#ezda. 7–9 july 2014 year. Sankt-Peterburg. P. 62
  7. Revokatova A.P., Surkova G.V., Kirsanov A.A., Kislov A.V., Rivin G.S. Prognoz zagrjaznenija atmosfery Moskovskogo regiona s pomoshh'ju modeli COSMO–ART / Vestnik MGU. Ser. Geografija. 2012. N 4. P. 25–33.
  8. Surkova G.V., Blinov D.V., Kirsanov A.A., Revokatova A.I., Rivin G.S. Modelirovanie rasprostranenija shlejfov vozdushnyh zagrjaznenij ot ochagov lesnyh pozharov s ispol'zovanie himiko-transportnoj modeli COSMO-Ru7 ART // Optika atmosf. i okeana. 2014. V. 27, N 1. P. 75–81; Surkova G.V., Blinov D.V., Kirsanov A.A., Revokatova A.P., Rivin G.S. Simulation of spread of air pollution plumes from forest fires with the use of COSMO-Ru7-ART chemical-transport model // Atmos. Ocean. Opt. 2014. V. 27, N 3. P. 268–274.
  9. Zaripov R.B., Konovalov I.B., Glazkova A.A. Raschet koncentracij zagrjaznjajushhih veshhestv s ispol'zovaniem modeli atmosfery WRF-ARW i himiko-transportnoj modeli CHIMERE // Meteorol. i gidrol. 2013. N 12. P. 52–67.
  10. Vil'fand R.M., Rivin G.S., Rozinkina I.A. Sistema COSMO-RU negidrostaticheskogo mezomasshtabnogo kratkosrochnogo prognoza pogody Gidrometcentra Rossii: pervyj jetap realizacii i razvitija // Meteorol. i gidrol. 2010. N 8. P. 5–20.
  11. Rivin G.S., Rozinkina I.A., Blinov D.V. Tehnologicheskaja linija sistemy kratkosrochnyh mezomasshtabnyh operativnyh prognozov pogody COSMO-RU s shagom setki 7 km // Trudy Gidrometcentra Rosii. 2012. N 347. P. 61–80.
  12. Vogel H., Förstner J., Vogel B., Hanisch T., Mühr B., Schättler U., Schad T. Quasi-operational modeling of the Eyjafjallajökull volcanic ash episode with COSMO-ART at DWD // EMS Annual Meeting Abstracts. 2011. V. 8. EMS2011-871.
  13. Vogel B., Vogel H., Baumner D., Bangert M., Landgren K., Rinke R., Stanelle T. The comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of the atmosphere on the regional scale // Atmos. Chem. Phys. 2009. V. 9, iss. 22. P. 8661–8680.
  14. Klimaticheskie harakteristiki uslovij rasprostranenija primesej v atmosfere / Pod red. Je.Ju. Bezugloj, M.E. Berljanda. Spravochnoe posobie. L.: Gidrometeoizdat, 1983.  328 p.
  15. Ib Troen L. Mahrt А simple model of the atmospheric boundary layer; sensitivity to surface evaporation // Boundary-Layer Meteorol. 1986. V. 37, iss. 1–2. Р.129–148.
  16. Cheinet S., Teixeira J. A simple formulation for the eddy-diffusivity parameterization of cloud-topped boundary layers // Geophys. Res. Lett. 2003. V. 30, N 18. P. 1930–1939. DOI: 10.1029/2003gl017377.
  17. Stull R.B. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers. 1988. 670 р.
  18. Sorensen J.H., Rasmussen A., Svensmark H. Forecast of Atmospheric Boundary-Layer Height Utilised for ETEX Real-Time Dispersion Modelling // Phys. Chem. Earth. 1996. V. 21, N 5–6. P. 435–439.
  19. Seibert P., Beyrichb F., Gryningc S-E., Joffred S., Rasmussene A., Tercierf P. Review and intercomparison of operational methods for the determination of the mixing height // Atmos. Environ. 2000. V. 34, iss. 7. P. 1001–1027.
  20. Vogelezang D.H.P., Holtslag A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations // Boundary-Layer Meteorol. 1996. V. 81, iss. 3–4. Р. 245–269.
  21. Wetzel P.J. Toward parametrization of the stable boundary layer // J. Appl. Meteorol. 1982. V. 21, N 1. Р. 7–13.
  22. Vel'tishhev N.F., Zhupanov V.D. Chislennye prognozy pogody po negidrostaticheskim modeljam obshhego pol'zovanija WRF-ARW i WRF–NMM // Gidrometcentr Rossii. M.: Triada LTD, 2010. P. 94–135.
  23. Rasmussen A., Tercier P.A. De Meij A., Gzella A., Cuvelier C., Thunis P., Bessagnet B., Vinuesa J.F., Menut L., Kelder H.M. The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations // Atmos. Chem. Phys. 2009. V. 9, N 17. P. 6611–6632.

Back