Vol. 30, issue 01, article # 2

Nikiforova M.P., Zvyagintsev A.M., Vargin P.N., Ivanova N.S., Lukyanov A.N., Kuznetsova I.N. Extremely low total ozone values over the northern Ural and Siberia in the end of January 2016. // Optika Atmosfery i Okeana. 2017. V. 30. No. 01. P. 12-19 [in Russian].
Copy the reference to clipboard

During the last week of January 2016 total ozone values ca. 200 DU was detected over the northern Ural and Siberia. Such phenomena was classified as ozone “mini-hole”. There was the first time during all the monitoring period since 1970 when ozone “mini-hole” formed here in the first half of the year. Possible causes and factors of extremely low ozone values initiation during the winter 2016 in comparison to other Arctic winters with sufficient ozone losses were analyzed. A primary role of dynamic processes in ozone anomaly formation in January 2016 was shown. The assumption was made that the greater negative ozone anomalies are likely to appear over Arctic in future.


ozone “mini-hole”, ozone layer changes, stratospheric polar vortex, middle atmosphere dynamics


  1. WMO Ozone Report N 55. Scientific Assessment of Ozone Depletion: 2014. Geneve: WMO, 2014. URL: http:// www.esrl.noaa.gov/csd/assessments/ozone/2014/
  2. Frith S., Kramarova N., Stolarski R., McPeters D., Bhartia P., Labow G. Recent changes in total column ozone based on the SBUV Version 8.6 merged ozone data set // J. Geophys. Res. 2014. V. 119, N 16. P. 9735–9751.
  3. Chehade W., Weber M., Burrows J.Р. Total ozone trends and variability during 1979–2012 from merged data sets of various satellites // Atmos. Chem. Phys. 2014. V. 14, N 13. P. 7059–7074.
  4. Zvjagincev A.M., Vargin P.N., Peshin S. Izmenchivost' i trendy obshhego soderzhanija ozona v period 1979–2014 years. // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 800–809; Zvyagintsеv А.М., Vаrgin P.N., Pеshin S. Total ozone variations and trends during the period 1979–2014 // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 575–584.
  5. Newman P.A., Oman L.D., Douglass A.R., Fleming E.L., Frith S.M., Hurwitz M.M., Kawa S.R., Jackman C.H., Krotkov N.A., Nash E.R., Nielsen J.E., Pawson S., Stolarski R.S., Velders G.J.M. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? // Atmos. Chem. Phys. 2009. V. 9, N 6. P. 2113–2128.
  6. Newman P.A., Nash E.R., Douglass A.R., Nielsen J.E., Stolarski R.S. Estimating when the antarctic ozone hole will recover // Twenty Years of Ozone Decline / C. Zerefos et al. (eds.). Springer Science + Business Media B.V., 2009. P. 191–200. DOI: 10.1007/978-90-481-2469-5_14.
  7. Vargin P.N., Gruzdev A.N. Chto proishodit s ozonovym sloem v nastojashhee vremja? // Vestn. RAN. 2013. V. 83, N 4. P. 354–358.
  8. Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.P., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyrö E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Parron-do M.C., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011 // Nature (Gr. Brit.). 2011. V. 478, N 7370. P. 469–475.
  9. Bazhenov O.E., Burlakov V.D. Anomal'noe ponizhenie urovnja obshhego soderzhanija ozona nad Tomskom i severnoj territoriej Rossii in march–april 2011 year. // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 915–919.
  10. Hurwitz M.M., Newman P.A., Garfinkel C.I. The Arctic vortex in March 2011: A dynamical perspective // Atmos. Chem. Phys. 2011. V. 11, N 23. P. 11447–11453.
  11. Strahan S.E., Douglass A.R., Newman P.A. The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations // J. Geophys. Res. D. 2013. V. 118, N 3. P. 1563–1576.
  12. Zvjagincev A.M., Kuznecov G.I., Kuznecova I.N. Vesennie anomalii ozonovogo sloja nad Rossiej // Meteorol. i gidrol. 2013. N 5. P. 5–13.
  13. Ozonovaja anomalija nad severom Urala i Sibiri. URL: http://www.meteorf.ru/press/news/11045/
  14. Gushhin G.P. Opticheskie metody i pribory dlja izmerenija atmosfernogo ozona i ocenka pogreshnosti izmerenij // Atmosfernyj ozon. L.: Gidrometeoizdat, 1987. P. 22–36.
  15. Bojkov R.D., Balis D.S. Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957–2000 // Ann. Geophys. 2001. V. 19, N 7. P. 797–807.
  16. Большая Российская Энциклопедия. V. 23. М.: БРЭ, 2013. 768 p.
  17. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
  18. Balis D.S. An update on the dynamically induced episodes of extreme low ozone values over the northern middle latitudes // Int. J. Remote Sens. 2011. V. 32, N 24. P. 9197–9205.
  19. Solomon S., Portman R.W., Thompson D.W.J. Contrasts between Antarctic and Arctic ozone depletion // Proc. Nat. Acad. Sci. USA (PNAS). 2007. V. 104, N 2. P. 445–449.
  20. Solomon S., Haskins J., Ivy D.J., Min F. Fundamental differences between Arctic and Antarctic ozone depletion // Proc. Nat. Acad. Sci. USA (PNAS). 2014. V. 111, N 17. P. 6220–6225.
  21. Peters D., Egger J., Entzian G. Dynamical aspects of ozone mini-hole formation // Meteorol. Atmos. Phys. 1995. V. 55, N 3–4. P. 205–214.
  22. James P.M., Peters D. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere // Ann. Geophys. 2002. V. 20, N 6. P. 835–846.
  23. Luk'janova N.F., Ljudchik A.M. Statistika anomal'nyh javlenij v ozonosfere nad Evropoj // Meteorol. i gidrol. 2008. N 8. P. 37–48.
  24. Hommel R., Eichmann K.-U., Aschmann J., Bramstedt K., Weber M., von Savigny C., Richter A., Rozanov A., Wittrock F., Khosrawi F., Bauer R., Burrows J.P. Chemical ozone loss and ozone mini-hole event during the Arctic winter 2010/2011 as observed by SCIAMA-CHY and GOME-2 // Atmos. Chem. Phys. 2014. V. 14, N 7. P. 3247–3276.
  25. Bozhkov R.D., Fioletov V.Je., Kadygrova T.V., Romashkina K.I., Shalamjanskij A.M. Ocenka umen'shenija ozona nad Evropoj v 1973–1995 years na osnove otkorrektirovannyh dannyh nabljudenij fil'trovyh ozonometrov // Meteorol. i gidrol. 1995. N 9. P. 30–40.
  26. Tarasenko D.A. Struktura i cirkuljacija stratosfery i mezosfery severnogo polusharija. L.: Gidrometeoizdat, 1988. 287 p.
  27. Climate Prediction Center – Stratosphere Home. URL: http: //www.cpc.ncep.noaa.gov/products/stratosphere/
  28. NOAA Earth System Research Laboratory. URL: http:// www.esrl.noaa.gov/
  29. University of Wyoming – Upperair Air Data. URL: http://weather.uwyo.edu/upperair/
  30. Perov S.P., Hrgian A.H. Sovremennye problemy atmosfernogo ozona. Л.: Gidrometeoizdat, 1980. 288 p.
  31. Schwartz M.J., Manney G.L., Hegglin M.I., Livesey N.J., Santee M.L., Daffer W.H. Climatology and variability of trace gases in extratropical double-tropopause regions from MLS, HIRDLS, and ACE-FTS measurements // J. Geophys. Res. D. 2015. V. 120, N 2. P. 843–867.
  32. Global Atmosphere Watch Newsletter. N 4, March 2016. URL: http://www.wmo.int/pages/prog/arep/gaw/
  33. Lukyanov A., Nakane H., Yushkov V. Lagrangian estimation of ozone loss in the core and edge region of the arctic polar vortex 1995/1996: Model results and observations // J. Atmos. Chem. 2003. V. 44, N 2. P. 191–210.
  34. Holton J.R., Tan H.-C. The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere // J. Meteorol. Soc. Jap. 1982. V. 60, N 1. P. 140–148.
  35. WMO Arctic ozone bulletin. 2016. N 1. URL: https: // www.wmo.int/pages/prog/arep/WMOArcticOzoneBulletins2016.html
  36. Thompson D.W.J., Seidel D.J., Randel W.J., Zou C.-Z., Butler A.H., Mears C., Osso A., Long C., Lin R. The mystery of recent stratospheric temperature trends // Nature (Gr. Brit.). 2012. V. 491, N 7426. P. 692–697.
  37. Ayarzagüena B., Langematz U., Meul S., Oberländer S., Abalichin J., Kubin A. The role of climate change and ozone recovery for the future timing of major stratospheric warmings // Geophys. Res. Lett. 2013. V. 40, N 10. P. 2460–2465.
  38. Langematz U., Meul S., Grunow K., Romanowsky E., Oberländer S., Abalichin J., Kubin A. Future Arctic temperature and ozone: The role of stratospheric composition changes // J. Geophys. Res. D. 2014. V. 119, N 5. P. 2092–2112. DOI: 10.1002/2013JD021100.
  39. Ivy D., Solomon S., Rieder H. Radiative and dynamical influences on polar stratospheric temperature trends // J. Climate. 2016. V. 29, N 13. P. 4927–4938.
  40. Randel W., Smith A., Wu F., Zou C., Qian H. Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations // J. Climate. 2016. V. 29, N 13. P. 4843–4859.
  41. Seidel D.J., Li J., Mears C., Moradi I., Nash J., Randel W.J., Saunders R., Thompson D.W.J., Zou C.-Z. Stratospheric temperature changes during the satellite era // J. Geophys. Res. D. 2016. V. 121, N 2. P. 664–681.
  42. Zhao L., Xu J., Powell A.M., Jiang Z., Wang D. Use of SSU/MSU satellite observations to validate upper atmospheric temperature trends in CMIP5 simulations // Remote Sens. 2016. V. 8, N 13. DOI: 10.3390/rs8010013.
  43. Rieder H.E., Polvani L.M. Are recent Arctic ozone losses caused by increasing greenhouse gases? // Geophys. Res. Let. 2013. V. 40, N 16. P. 4437–4441.