Vol. 29, issue 11, article # 2

Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Structure of air turbulent motion inside Primary mirror shaft at Siberian lidar station of IAO SB RAS. Experiment and simulation. // Optika Atmosfery i Okeana. 2016. V. 29. No. 11. P. 905–910 [in Russian].
Copy the reference to clipboard
Abstract:

Structure of air turbulent motion inside the dome room (Primary mirror closed shaft) at Siberian lidar station of V.E. Zuev Institute of Atmospheric Optics of SB RAS has been experimentally and theoretically studied. The researches are needed to forecast the laser radiation distortion. Experimental measurements have been performed with the portable compact ultrasonic meteorological station. The major heat-exchange directions of air flows inside the dome have been determined. Theoretical results have been obtained by numerical solving of the boundary value problem for Navier–Stokes equations. Solitary large vortices (coherent structures, topological solitons) are observed indoors. Coherent decay of these vortices leads to the coherent turbulence. One may expect the weakening of optical radiation phase fluctuations inside the dome and, therefore, the enhancement of optical images. It increases the efficiency of lidar station.

Keywords:

turbulence, coherent turbulence, coherent structure, topological soliton, simulation of coherent structures, hydrodynamics equations, Navier–Stokes equations, topological precursors

References:

  1. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroklimat specializirovannyh pomeshhenij Bol'shogo solnechnogo vakuumnogo teleskopa. Part 1 // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 1013–1021.
  2. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroklimat specializirovannyh pomeshhenij Bol'shogo solnechnogo vakuumnogo teleskopa. Part 2 // Optika atmosf. i okeana. 2008. V. 21, N 3. P. 207–217.
  3. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in the turbulent atmosphere // Mathematical Models of Non-linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere / Eds. A.B. Nadycto et al. N.Y.: Nova Science Publishers, 2013. Ch. 20. P. 297–330.
  4. Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmosfernaja kogerentnaja turbulentnost' // Optika atmosf. i okeana. 2012. Т. 25, № 9. С. 753–759; Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmospheric Coherent Turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
  5. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in turbulent atmosphere // Proc. SPIE. 2009. V. 7296-09. P. 53–70.
  6. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Causes of non-Kolmogorov turbulence in the atmosphere // Appl. Opt. 2016. V. 55, N 12. P. B163–B168.
  7. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye struktury – jelementarnye sostavljajushhie atmosfernoj turbulentnosti // Izv. vuzov. Fiz. 2012. V. 55, N 9/2. P. 236–238.
  8. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye sostavljajushhie turbulentnosti // Tezisy dokl. Mezhdunar. konf., posvjashhennoj pamjati akademika A.M. Obuhova «Turbulentnost', dinamika atmosfery i klimata». I. Turbulentnost'. M.: IFA RAN, 2013. P. 43–47.
  9. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Rezul'taty izmerenij astro-klimaticheskih harakteristik podkupol'nogo prostranstva teleskopa AZT-33 Sajanskoj solnechnoj observatorii Instituta solnechno-zemnoj fiziki SO RAN // Solnechno-zemnaja fizika. 2006. Issue 9 (122). P. 101–103.
  10. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Repeated testing of under dome astroclimate of AZT-33 telescope // Proc. SPIE. 2008. V. 7296-08. P. 48–53.
  11. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory // Proc. SPIE. 2008. V. 69361R. P. 1–4.
  12. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Simulation of coherent structures (topological solitons) indoors by numerical solving of hydrodynamics equations // Proc. SPIE. 2014. V. 9292. P. 92920U-1-14.
  13. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Modelirovanie kogerentnyh struktur (topologicheskih solitonov) v zakrytyh pomeshhenijah putem chislennogo reshenija uravnenij gidrodinamiki // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 120–133.
  14. Popinet S. The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2001–2015. URL: http://gfs.sf.net
  15. Popinet S. 100 Gerris Tests. V. 1.3.2. URL: http:// gerris.dalembert.upmc.fr/gerris/tests/tests/index.html; Gerris: Bibliography. URL: http://gfs.sf.net/wiki/index.php/Bibliography; List of recent publications. URL: http://gfs.sf.net/wiki/index.php/User:Popinet

Back