Vol. 29, issue 10, article # 6

Russkova T.V., Zhuravleva T.B. The optimization of sequential code for simulation of solar radiative transfer in a vertically heterogeneous environment. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 836–842 [in Russian].
Copy the reference to clipboard

Article belongs to the series of works aimed at improving the performance of radiation codes that implement the statistical Monte Carlo method. A brief description of the main blocks of the two programs for calculating the intensity of solar radiation in a vertically inhomogeneous medium, basis, in FORTRAN, and its optimized version, in the C language, is presented. The results of tests aimed at assessing the performance of each of the code under different conditions of numerical experiment are presented. In the cases examined, the performance indicators of optimized C code were higher as compared with the basis one. It is shown that differences in execution time of the codes are reduced by increasing the optical density of the atmosphere, and using more efficient computers. Developed C program can serve as a basis for creating a high-performance radiation code.


solar radiation, clouds, Monte Carlo method, numerical simulation, optimization, Fortran and C programming languages


  1. Boas D., Culver J., Stott J., Dunn A. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head // Opt. Express. 2002. V. 10, N 3. P. 159–170.
  2. Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., Jonge N., Drouin D. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software // Scanning. 2011. V. 33, iss. 3. P. 135–146.
  3. Fang Q., Kaeli D.R. Accelerating mesh-based Monte Carlo method on modern CPU architectures // Biomed. Opt. Express. 2012. V. 3, iss. 12. P. 3223–3230.
  4. Mohanty S.K., Lakshminarayananan V. Optical Techniques in Optogenetics // J. Mod. Opt. 2015. V. 62, N 12. P. 949–970.
  5. 3D Radiative Transfer in Cloudy Atmospheres / Ed. by A. Marshak, A. Davis. Berlin; Heidelberg: Springer, 2005. 688 p.
  6. Owens J.D., Houston M., Luebke D., Green S., Stone J.E., Phillips J.C. GPU computing // Proc. IEEE. 2008. V. 96, N 5. P. 879–899.
  7. Bass L.P., Nikolaeva O.V. Raduga-6 – programma rascheta stacionarnyh i nestacionarnyh nejtronnyh i gamma polej v 1D, 2D, 3D oblastjah // Trudy 7-j MNTK «Obespechenie bezopasnosti AJeS s VVJeR», OKB «GIDROPRESS», 2011.
  8. Berk A., Anderson G.P., Acharya P.K., Bernstein L.S., Muratov L., Lee J., Fox M., Adler-Golden S.M., Chetwynd J.H., Hoke M.L., Lockwood R.B., Gardner J.A., Cooley T.W., Borel C.C., Lewis P.E., Shettle E.P. MODTRAN5: 2006 Update // Proc. SPIE. 2006. V. 6233. N 62331F. DOI: 10.1117/12.665077.
  9. Ricchiazzi P., Yang S., Gautier C., Sowle D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere // Bull. Amer. Meteorol. Soc. 1998. V. 79, N 10. P. 2101–2114.
  10. Grosse-Kunstleve R.W., Terwilliger Т.C., Sauter N.K. Adams P.D. Automatic Fortran to C++ conversion with FABLE // Source Code Biol. Med. 2012. V. 7. Article number 5. DOI: 10.1186/1751-0473-7-5.
  11. Buras R., Dowling T., Emde C. New secondary-scattering correction in DISORT with increased efficiency for forward scattering // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 12. P. 2028–2034.
  12. URL: http://reef.atmos.colostate.edu/~gregm/xrtm/
  13. Buehler S.A., Eriksson P., Kuhn T., von Engeln A., Verdes C. ARTS, the Atmospheric Radiative Transfer Simulator // J. Quant. Spectrosc. Radiat. Transfer. 2005 V. 91, N 1. P. 65–93.
  14. Wang L.H., Jacques S.L., Zheng L. MCML – Monte Carlo modeling of photon transport in multi-layered tissues // Comp. Methods Programs Biomed. 1995. V. 47. P. 131–146.
  15. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinjan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, 1976. 280 p.
  16. Nazaraliev M.A. Statisticheskoe modelirovanie radiacionnyh processov v atmosfere. Novosibirsk: Nauka, 1990. 227 p.
  17. Hess M., Koepke P., Schult I. Optical Properties of Aerosols and Clouds: The software package OPAC // Bull. Amer. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844.
  18. Komarov V.S., Lomakina N.Ja. Statisticheskie modeli pogranichnogo sloja atmosfery Zapadnoj Sibiri. Tomsk: Izd-vo IOA SO RAN, 2008. 222 p.
  19. Hook S.J. ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library. 1998. Dedicated CD-ROM. Version1.2. (см. также http://speclib.jpl.nasa.gov).