Vol. 29, issue 10, article # 5

Solodov A.A., Ponomarev Yu.N., Petrova T.M., Solodov A.M. Broadening of CO absorption lines, caused by collisions with nanopore walls of hybrid SiO2/Al2O3 хerogel. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 833–835 [in Russian].
Copy the reference to clipboard
Abstract:

Absorption spectrum of carbon oxide confined in nanopores of hybrid SiO2/Al2O3 xerogel has been recorded for the first time. Half-width values of spectral lines was obtained, their dependence on quantum numbers was considered and compared with the data available in literature.

Keywords:

СО SiO2/Al2O3 хerogel, line half-widths

References:

  1. Xu Q. Nanoporous materials: Synthesis and applications. Boca Raton: CRC Press, FL. 2013. 384 р.
  2. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
  3. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
  4. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Spectroscopic nanoporometry of aerogel // J. Exp. Theor. Phys. Lett. 2015. V. 101, N 1. P. 65–67.
  5. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. В. 2013. V. 110, iss. 2. P. 147–154.
  6. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87. P. 032510 (10 p.).
  7. Hartmann J.-M., Boulet C., Auwera V.J., El Hamzaoui H., Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule–wall to molecule–mo-
    lecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
  8. Auwera V.J., Ngo N.H., El Hamzaoui H., Capoen B., Bouazaoui M., Ausset P., Boulet C., Hartmann J.-M. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule–surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 88. P. 042506.
  9. Suetaka W. Surface infrared and Raman spectroscopy. Methods and applications. N.Y.: Plenum Press, 1995. 270 p.
  10. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Browng L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Miller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN-2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
  11. Petrova T.M., Ponomarev Ju.N., Solodov A.A., Solodov A.M., Glazkova E.A., Bakina O.V., Lerner M.I. IK-spektry pogloshhenija CO2, C2H4, C2H6 v nanoporah SiO2/Al2O3-ajerogelja // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 380–385.
  12. Aravind P.R., Mukundan P., Pillai P.K., Warrier K.G.K. Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying // Micropor. Mesopor. Mat. 2006. V. 96, iss. 1–3. P. 14–20.

Back