Vol. 29, issue 10, article # 4

Lavrent'eva N.N., Dudaryonok A.S. Broadening coefficients of water vapor lines induced by pressure of hydrogen, temperature dependence. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 828–832 [in Russian].
Copy the reference to clipboard

Theoretical broadening coefficients of rotation vibration water vapor lines induced by hydrogen pressure are given. The averaged frequency method has been used to calculate line widths. Calculations have been performed for a wide interval of rotational quantum numbers in the spectral region from 500 to 10 000 cm–1. Line widths have been computed by the averaged frequency method for rotation quantum number J from 0 to 20, data have been obtained by interpolation of J-dependence for J from 20 to 50. Temperature exponents for line widths have been defined.


line broadening, intermolecular interaction, averaged frequency method, temperature exponent


  1. Dudarjonok A.S., Lavrent'eva N.N., Ma Q. Metod srednih chastot dlja rascheta polushirin linij molekul tipa asimmetrichnogo volchka // Optika atmosf. i okeana. 2015. V. 28. N 8. P. 675–681; Dudaryonok A.S., Lavtentieva N.N., Ma Q. The average energy difference method for calculation of line broadening of asymmetric tops // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 503–509.
  2. Steyert D.W., Wang W.F., Sirota J.M., Donahue N.M., Reuter D.C. Hydrogen and helium pressure broadening of water transitions in the 380–600 cm–1 region // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, iss. 2. P. 183–191.
  3. Brown L.R., Plymate C. H2-broadened H216O in four infrared bands between 55 and 4045 cm−1 // J. Quant. Spectrosc. Radiat. Transfer. 1996. V. 56, iss. 2. P. 263–282.
  4. Gamache R.R., Lynch R., Brown L.R. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas // J. Quant. Spectrosc. Radiat. Transfer. 1996. V. 56, iss. 4. P. 471–487.
  5. Langlois S., Birbeck T.P., Hanson R.K. Temperature-Dependent Collision-Broadening Parameters of H2O Lines in the 1.4-μm Region Using Diode Laser Absorption Spectroscopy // J. Mol. Spectrosc. 1994. V. 167, iss. 2. P. 272–281.
  6. Dutta J.M., Jones C.R., Goyette T.M., Lucia F.C. The Hydrogen and Helium Pressure Broadening at Planetary Temperatures of the 183 and 380 GHz Transitions of Water Vapor // Icarus. 1993. V. 102, iss. 2. P. 232–239.
  7. Golubiatnikov G.Yu. Shifting and broadening parameters of the water vapor 183-GHz line (31 3–22 0) by H2O, O2, N2, CO2, H2, He, Ne, Ar and Kr at room temperature // J. Mol. Spectrosc. 2005. V. 230, iss. 2. P. 196–198.
  8. Brown L.R., Benner D.C., Devi V.M., Smith M.A.H., Toth R.A. Line mixing in self- and foreign-broadened water vapor at 6 μm // J. Mol. Struct. 2005. V. 742, iss. 1–3. P. 111–122.
  9. Dick M.J., Drouin B.J., Pearson J.C. A collisional cooling investigation of the pressure broadening of the 110 ← 101 transition of water from 17 to 200 K // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, iss. 9–10. P. 619–627.
  10. Faure A., Wiesenfeld L., Drouin B.J., Tennyson J. Pressure broadening of water and carbon monoxide transitions by molecular hydrogen at high temperatures // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 116. P. 79–86.
  11. Drouin B., Wiesenfeld L. Low-temperature water–hydrogen-molecule collisions probed by pressure broadening and line shift // Phys. Rev. A. 2012. V. 86, iss. 6. P. 1–6. P. 022705.