Vol. 29, issue 10, article # 1

Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Water vapor line wing absorption and violation of the long-wave approximation for molecular centers of mass. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 805–815 [in Russian].
Copy the reference to clipboard
Abstract:

Further development of the asymptotic line wing theory is presented where the long-wave approximation for the molecular centers of mass is violated. This provides long molecular trajectories going far beyond an elementary volume in the case of the nonresonance light absorption. The occurrence of long trajectories is evidence of a certain degree of ordering of molecular chaos. The latter can be described by means of a modified semiclassical representation method to establish correlation between displacement and velocity operators. An expression for the absorption coefficient is derived that allows an ambiguity concerning the estimation of the parameters of the potentials to be avoided and the temperature dependence of the absorption coefficient in line wings to be described. The calculations under consideration employ a diffusion model for H2O absorption in the 3–5 mm window region and for CO2 absorption in the 4.3 mm band wing to describe the temperature dependence of the absorption coefficient. It is shown that long molecular trajectories significant for the 8–12 and 3–5 mm H2O window regions can hardly play a role in the 4.3 mm CO2 band wing.

Keywords:

line wing theory, intermolecular interaction potential, violation of the long-wave approximation, Н2О, СО2, continuum absorption

References:

  1. Hettner G. Infra-red absorption spectrum of water-vapour // Ann. Phys. 1918. V. 55, Heft 6. P. 476–496.
  2. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: I. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313-1–124313-17.
  3. Bogdanova Yu.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2298–2307.
  4. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 77–83.
  5. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  6. Leforestier C., Tipping R.H., Ma Q. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption // J. Chem. Phys. 2010. V. 132, iss. 16. P. 164302-1–164302-14.
  7. Brown A., Tipping R.H. Collision-induced absorption in dipolar molecule – homonuclear diatomic pairs // Weakly interacting pairs: Unconventional absorbers of radiation in the atmosphere / Eds. by C. Camy-Peyret, A.A. Vigasin. Kluwer Academic, Dordrecht. 2003. P. 93–99.
  8. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302.
  9. Baranov Yu.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
  10. Baranov Yu.I. The continuum absorption in H2O–N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281–2286.
  11. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808.
  12. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm–1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301-1–D21301-23.
  13. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D163057.
  14. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. Roy. Soc. A. 2012. V. 370, N 1968. P. 2557–2577.
  15. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
  16. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-mm atmospheric windows // J. Directed Energy. 2006. V. 2. P. 151–161.
  17. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  18. Burch D.E. Continuum absorption by H2O // Report AFGL-TR-81-0300. 1982. 46 p.
  19. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700–1200 cm–1 and 2400–2800 cm–1 windows // Report AFGL-TR-84-0128. 1984. 30 p.
  20. Kaplan I.G., Rodimova O.B. Mezhmolekuljarnye vzaimodejstvija // Uspehi fiz. nauk. 1978. V. 126, iss. 3. P. 403–449.
  21. Kaplan I.G. Vvedenie v teoriju mezhmolekuljarnyh vzaimodejstvij. M.: Nauka, 1982. 312 p.
  22. Kaplan I.G. Intermolecular interactions: Physical picture, computational methods and model potentials. Chichester: John Wiley & Sons, 2006. 380 р.
  23. Hill T.L. Molecular clusters in imperfect gases // J. Chem. Phys. 1955. V. 23, N 4. P. 617–622.
  24. Rodimova O.B. Continuum water vapor absorption in the 4000–8000 cm–1 region // Proc. SPIE. 2015. V. 9680. P. 968002-1–968002-7.
  25. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavlenija kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.
  26. Tvorogov S.D., Gordov E.P., Rodimova O.B. Mezhmolekuljarnye vzaimodejstvija i molekuljarnaja spektroskopija: ot poluklassicheskogo predstavlenija kvantovoj teorii k kryl'jam linij // Optika atmosf. i okeana. 2007. V. 20, N 9. P. 760–763.
  27. Tvorogov S.D. Problema centrov mass v zadache o konture spektral'nyh linij. I. Sushhestvovanie dlinnyh traektorij // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 413–419; Тvоrоgоv S.D. Problem of centers of mass within the problem of the contour of spectral lines. I. Existence of long trajectories // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 257–263.
  28. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekuljarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
  29. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyj kontur spektral'nyh linij. Tomsk: Izd-vo IOA SO RAN, 2013. 195 p.
  30. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83, N 12. P. 6139–6144.
  31. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
  32. Tvorogov S.D., Rodimova O.B. Asimptoticheskij i kvazistaticheskij podhody v teorii kontura spektral'noj linii // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 31–45.
  33. Ludwig C.B., Ferriso C.E., Malkmus W., Boynton T.P. High-temperature spectra of the pure-rotational band of H2O // J. Quant. Spectrosc. Radiat. Transfer. 1965. V. 5, N 4. P. 697–714.
  34. Varanasi P., Chou S., Penner S.S. Absorption coefficients for water vapor in the 600–1000 cm–1 region // J. Quant. Spectrosc. Radiat. Transfer. 1968. V. 8, iss. 8. P. 1537–1541.
  35. Tonkov M.V., Filippov N.N. Vlijanie vzaimodejstvij molekul na formu kolebatel'no-vrashhatel'nyh polos v spektrah gazov. Svojstva spektral'noj funkcii // Optika i spektroskopija. 1983. V. 54, iss. 5. P. 801–806.
  36. Bogdanova Yu.V., Rodimova O.B. Role of diffusion in the violation of the long-wave approximation in line wings // Int. J. Quant. Chem. 2012. V. 112, iss. 17. P. 2924–2931.
  37. Tvorogov S.D., Rodimova O.B. Problema centrov mass v zadache o konture spektral'nyh linij. II. Volnovaja funkcija i matrica plotnosti pogloshhajushhej svet molekuly posle opticheski aktivnogo stolknovenija // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 633–639.
  38. Terleckij Ja.P. Statisticheskaja fizika. M.: Vyssh. shk., 1966. 236 p.
  39. Singh O., Joshi A.W. Effective potential for water vapour // Pramana. 1980. V. 15, N 5. P. 407–412.
  40. Harvey A.H., Lemmon E.W. Correlation for the second virial coefficient of water // J. Phys. Chem. Ref. Data. 2004. V. 33, N 1. P. 369–376.
  41. Rowlinson J.S. The second virial coefficients of polar gases // Trans. Faraday Soc. 1949. V. 45. P. 974–984.
  42. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Description of the H2O absorption in the 3–5 mm region under violation of the long-wave approximation in line wings // Proc. SPIE. 2014. V. 9292. P. 92920G-1–92920G-6.
  43. Bogdanova Ju.V., Rodimova O.B. Uchet diffuzii pri raschete kojefficienta pogloshhenija v kryle polosy 4,3 mm СО2 // XVII Mezhdunar. simpoz. «Optika atmosf. i okeana. Fiz. atmosf.». Tomsk, 28 june – 1 july 2011 year. Sbornik trudov [Jelektronnyj resurs]. Tomsk: Izd-vo IOA SO RAN, 2011. P. А-100–А-103.
  44. Hartmann J.M., Perrin M.Y., Ma Q., Tipping R.H. The infrared continuum of pure water vapor: Calculations and high-temperature measurements // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 49, N 6. P. 675–691.
  45. Cousin C., LeDoucen R., Boulet C., Henry A., Robert D. Line coupling in the temperature and frequency dependence of absorption in the microwindows of the 4.3-mm CO2 band // J. Quant. Spectrosc. Radiat. Transfer. 1986. V. 36, N 6. P. 521–538.
  46. Rodimova O.B. Kontur spektral'nyh linij CO2 pri samoushirenii ot centra do dalekogo krylа // Optika atmosf. i okeana. 2002. V. 15, N 9. P. 768–777.

Back