Vol. 29, issue 07, article # 2

Nikolaeva O.V. The algorithm for retrieving surface albedo via multispectral remote sensing data of high spatial resolution. // Optika Atmosfery i Okeana. 2016. V. 29. No. 07. P. 541-547 [in Russian].
Copy the reference to clipboard
Abstract:

The fast atmospheric correction algorithm is described. The algorithm is based upon presentation of the reflectance for any albedo via reflectances for the same atmosphere and model surface albedos. Test results to demonstrate workability of the algorithm for high spatial resolution data processing are presented.

Keywords:

atmospheric correction, reflectance, high spatial resolution

References:


  1. Diner D.J., Martonchik J.V., Borel Ch., Gerstl S.A.W., Gordon H.R., Knyazikhin Y., Myneni R., Pinty B., Verstraete M.M. Multi-angle imaging spectro-radiometer. Level 2 surface retrieval algorithm theoretical basis. Pasadena: California Institute of Technology, 1999. 100 p.

  2. Levy R.C., Mattoo L.R.S., Vermote E., Kaufman Y.J. Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance // J. Geophys. Res. 2007. V. 112. D13211. DOI: 10.1029/2006JD007811.

  3. Vermote E.F., Vermeulen A. Atmospheric correction algorithm: Spectral reflectances (Mod09). Algorithm Technical Background Document. College Park, Maryland: University of Maryland, 1999. 107 p.

  4. Tarasenkov M.V., Belov V.V. Kompleks programm vosstanovlenija otrazhatel'nyh svojstv zemnoj poverhnosti v vidimom i UF-diapazonah // Optika atmosf. i okeana. 2014. V. 27, N 7. P. 622–626; Таrаsеnkоv М.V., Bеlоv V.V. Software package for reconstructing properties of the Earth’s surface in the visible and UV ranges // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 89–94.

  5. Belov V.V., Tarasenkov M.V. O tochnosti i bystrodejstvii RTM-algoritmov atmosfernoj korrekcii sputnikovyh izobrazhenij v vidimom i UF-diapazonah // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 564–571; Bеlоv V.V., Таrаsеnkоv М.V. On the accuracy and operation speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges // Atmos. Ocean. Opt. 2014. V. 27, N 1. P. 54–61.

  6. Lyapustin A.I., Wang Y., Laszlo I., Hilker T., Hall F.G., Sellers P.J., Tucker C.J., Korkin S.V. Multi-angle implementation of atmospheric correction for MODIS (MAIAC). 3. Atmospheric correction // Remote Sens. Environ. 2012. V. 127. P. 385–393.

  7. Roujean J.L., Leroy M., Deschamps P.Y. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data // J. Geophys. Res. D. 1992. V. 97, N 18. P. 20455–20468.

  8. Bréon F.M., Vermote E. Correction of MODIS surface reflectance time series for BRDF effects // Remote Sens. Environ. 2012. V. 125. P. 1–9.

  9. Nikolaeva O.V. Novyj algoritm vosstanovlenija al'bedo poverhnosti po dannym sputnikovogo zondirovanija // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 204–209.

  10. Sayer A.M., Smirnov A., Hsu N.C., Holben B.N. A pure marine aerosol model, for use in remote sensing applications // J. Geophys. Res. 2012. V. 117. D05213. DOI: 10.1029/2011JD016689.

  11. Nikolaeva O.V., Bass L.P., Kuznecov V.S. Raduga-6 – programma reshenija stacionarnogo i nestacionarnogo uravnenij perenosa izluchenija v 1D-, 2D-, 3D-oblastjah // Sbornik tezisov Mezhdunar. simpoz. «Atmosfernaja radiacija i dinamika». Sankt-Peterburg, 2011. P. 81–82. URL: http://www.rrc.phys.spbu.ru/msard11/thesis_11.pdf


  12.  

Back