Vol. 28, issue 12, article # 3

Klimkin A.V., Kuryak A.N., Ponomarev Yu.N., Kozlov A.S., Malyshkin S.B., Petrov A.K., Kupershtokh A.L., Karpov D.I., Medvedev D.A. Generation of aerosol and droplets in mixtures of water vapor with air and molecular gases. // Optika Atmosfery i Okeana. 2015. V. 28. No. 12. P. 1065–1072 [in Russian].
Copy the reference to clipboard

Results of observation of generation of aerosol particles and drops in mixtures of saturated water vapor with air and molecular gases are described in the paper. The kinetics of the aerosol and drop generation was studied in the absence and under impact of monokinetic beam of electrons on the gas mixture with supersaturated water vapor, formed in the process of the controllable pressure unloading of the prepared gas mixture from a spherical chamber of 1.4 m in diameter to vacuum reservoir of 40 m3 in volume. The kinetics of generation of aerosol particles and drops was recorded by the method of laser beam (drop) small-angle scattering and with the help of aerosol spectrometer (particle). Experimental results show significant dependence of generation of drops and particles on the impact of ionizing radiation.
Three-dimensional computer simulation of the process of supersaturated water vapor condensation on ions by methods of Boltzmann lattice equations (LBE) and molecular dynamics (MD) describes qualitatively the obtained experimental results.


atmosphere, clouds, molecules, aerosol, drop, phase transition, ionizing radiation, computer modeling


  1. Ney E.P. Cosmic radiation and the weather // Nature (Gr. Brit.). 1959. V. 183. P. 451–452.
  2. Marsh N., Svensmark H. Cosmic Rays, Clouds and Climate // Space Sci. Rev. 2000. V. 94, N 1–2. P. 215–230.
  3. Andreas M., Enghoff B., Svensmark H. The role of atmospheric ions in aerosol nucleation: A review // Atmos. Chem. Phys. 2008. V. 8, N 16. P. 4911–4923.
  4. Krymskij G.F. Kosmicheskie luchi i pogoda // Nauka i tehnika v Jakutii. 2005. N 1(8). P. 3–6.
  5. Вильсон Д.Ж. Камера Вильсона. М.: Изд-во иностр. лит-ры, 1954. 152 p.
  6. Fol'mer M. Kinetika obrazovanija novoj fazy / Per. s nem. M.: Nauka1986. 208 p.
  7. Krymskij G.F., Kolosov V.V., Rostov A.P., Tyryshkin I.S. Ustanovka dlja issledovanija nukleacii vodjanyh parov v iskusstvennoj atmosfere // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 820–825.
  8. Krymskij G.F., Kolosov V.V., Tyryshkin I.S. Kondensacija para v prisutstvii ionizirujushhih vozdejstvij // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 826–829.
  9. Ponomarev Ju.N., Klimkin A.V., Kozlov A.S., Kolosov V.V., Krymskij G.F., Kurjak A.N., Malyshkin S.B., Petrov A.K. Issledovanija kondensacii peresyshhennogo vodjanogo para pri ionizacii atmosfery i soputstvujushhego harakteristicheskogo IK-izluchenija // Solnechno-zemnaja fiz. 2012. Issue 21. P. 58–61.
  10. Tarasenko V.F., Yakovlenko S.I., Orlovskii V.M., Tkachev A.N., Shunailov S.A. Production of powerful electron beams in dense gases // J. Experim. Theor. Phys. Lett. 2003. V. 77, N 11. P. 611–615.
  11. Das Gupta N.N., Ghosh S.K. Wilson chamber and its application to physics // Rev. Mod. Phys. 1946. V. 18, N 2. P. 225–365.
  12. Amelin A.G. Teoreticheskie osnovy obrazovanija tumana pri kondensacii para. M.: Himija, 1972. 304 p.
  13. Kolafa J. Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules // J. Comput. Chem. 2003. V. 25, N 3. P. 335–342.
  14. Chen S., Doolen G.D. Lattice Boltzmann method for fluid flow // Annu. Rev. Fluid Mech. 1998. V. 30. P. 329–364.
  15. Shan X., Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components // Phys. Rev. E. 1993. V. 47, N 3. P. 1815–1819.
  16. Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method // Comput. Math. Appl. 2009. V. 58, N 5. P. 965–974.
  17. Kupershtokh A.L., Medvedev D.A., Gribanov I.I. Modelirovanie teplomassoperenosa v srede s fazovymi perehodami metodom reshetochnyh uravnenij Bol'cmana // Vychislitel'nye metody i programmirovanie. 2014. V. 15, N 2. P. 317–328.