Vol. 28, issue 11, article # 6

Korshunov V.A., Zubachev D.S. Determination of the parameters of wave disturbances in the middle atmosphere from data of lidar sensing. // Optika Atmosfery i Okeana. 2015. V. 28. No. 11. P. 993–1002 [in Russian].
Copy the reference to clipboard
Abstract:

The vertical profiles of temperature of middle atmosphere (30–60 km) are derived from data of lidar sensing at 355 and 532 nm wavelengths using a modified Rayleigh method. Temperature disturbances on the background of average profiles are extracted using a smoothing spline. The vertical profiles of the potential energy density of gravity waves are calculated immediately on the basis of temperature fluctuations. The special parameters of wave disturbances, including local power spectra of temperature fluctuations, potential energy, vertical phase velocity, and period for separate wavelengths are determined using the continuous wavelet analysis. The software developed enables one to find characteristics of the wave disturbances localized in time and separated on the wavelength scale (wave packets). Results of lidar measurements carried out at Obninsk are presented.

Keywords:

lidar, gravity waves, middle atmosphere, wavelet analysis

References:

  1. Fritts D.C., Alexander M.J. Gravity wave dynamics and effects in the middle atmosphere // Rev. Geophys. 2003. V. 41, N 1. P. 1003. DOI: 10.1029/2001RG000106.
  2. Alexander M.J., Geller M., McLandress C., Polavarapu S., Preusse P., Sassi F., Sato K., Eckermann S., Ern M., Hertzog A., Kawatani Y., Pulido M., Shaw T.A., Sigmond M., Vincentk R., Watanabei S. Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models // Quant. J. Roy. Meteorol. Soc. 2010. V. 136. P. 1103–1124. DOI: 10.1002/qj.637.
  3. Vargin P.N., Volodin E.M., Karpechko A.Ju., Pogorel'cev A.I. O stratosferno-troposfernyh vzaimodejstvijah // Vestn. RAN. 2015. V. 85, N 1. P. 39–46. DOI: 10.7868/S0869587315010181.
  4. Chanin M.-L., Hauchecorne A. Lidar observation of gravity and tidal waves in the stratosphere and mesosphere // J. Geophys. Res. C. 1981. V. 86, N 10. P. 9715–9721.
  5. Gao X., Meriwether J.W., Wickwar V.B., Wilkerson T.D., Collins S. Raylegh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over Rocky Mountain region // J. Geophys. Res. D. 1998. V. 103, N 6. P. 6405–6416.
  6. Whiteway J.A., Carswell A.I. Lidar observations of gravity wave activity in the upper stratosphere over Toronto // J. Geophys. Res. D. 1995. V. 100, N 7. P. 14113–14124. DOI: 10.1029/95JD00511.
  7. Marsh K.P., Mitchell N.J., Thomas L. Lidar studies of stratospheric gravity wave spectra // Planet. Space Sci. 1991. V. 39, N 11. P. 1541–1548.
  8. Sato K., Yamada M. Vertical structure of stratospheric gravity waves revealed by the wavelet analyses // J. Geophys. Res. D. 1994. V. 99, N 10. P. 20623–20631.
  9. Alexander M.J.  Gravity Waves in the Stratosphere // The Stratosphere: Dynamics, Chemistry, and Transport / Ed. by L.M. Polvani, A. Sobel, D.W. Waugh. Geophys. Monogr. Ser.  2010. V. 190. Ch. 5. P. 109–121. DOI: 10.1029/2009GM000887.
  10. Korshunov V.A., Zubachev D.S. Nabljudenie poljarnyh stratosfernyh oblakov nad g. Obninsk v dekabre 2012 year. // Meteorol. i gidrol. 2014. N 4. P. 49–55.
  11. Korshunov V.A., Zubachev D.S., Merzljakov E.G., Jacobi Ch. Rezul'taty opredelenija ajerozol'nyh harakteristik srednej atmosfery metodom dvuhvolnovogo lidarnogo zondirovanija i ih sopostavlenie s izmerenijami meteornogo radiojeho // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 862–868.
  12. Hauchecorne A., Chanin M.L. Density and temperature profiles obtained by lidar between 35 and 70 km // Geophys. Res. Lett. 1980. V. 7, iss. 8. P. 565–568.
  13. Cheremisin A.A., Novikov P.V., Shnipov I.S., Bychkov V.V., Shevcov B.M. Lidarnye nabljudenija i mehanizm formirovanija struktury ajerozol'nyh sloev v stratosfere i mezosfere nad Kamchatkoj // Geomagnet. i ajeronom. 2012. V. 52, N 5. P. 690–700.
  14. McDonald J., Thomas L., Wareing D.P. Night-to-night changes in the characteristics of gravity waves at stratospheric and lower-mesospheric heights // Ann. Geophys. 1998. V. 16, N 2. P. 229–237.
  15. Rauthe M., Gerding M., Lübken F.-J. Seasonal changes in gravity wave activity measured by lidars at mid-latitudes // Atmos. Chem. Phys. 2008. V. 8, N 22. P. 6775–6787.
  16. Wilson R., Chanin M.L., Hauchecorne A. Gravity waves in the middle atmosphere observed by Rayleigh lidar. 2. Climatology // J. Geophys. Res. D. 1991. V. 96, N 3. P. 5169–5183.
  17. Smolencev N.K. Osnovy teorii vejvletov. Vejvlety v MATLAB. M.: DMK Press, 2005. 304 p.
  18. Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteorol. Soc. 1998. V. 79, N 1. P. 61–78.
  19. Rauthe M., Gerding M., Höffner J., Lübken F.-J. Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to 105 km: A winter-summer comparison // J. Geophys. Res. 2006. V. 111. D24108. DOI: 10.1029/2006JD007354.
  20. Dewan E. Saturated-cascade similitude theory of gravity wave spectra // J. Geophys. Res. D. 1997. V. 102, N 25. P. 29799–29817.
  21. Zhu X., Shen Z., Eckermann S.D., Bittner M., Hirota I., Yee J.-H. Gravity wave characteristics in the middle atmosphere derived from the Empirical Mode Decomposition method // J. Geophys. Res. D. 1997. V. 102, N 14. P. 16545–16561.
  22. Eckermann S.D. Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves // J. Geophys. Res. D. 1995. V. 100, N 7. P. 14097–14112.

Back