Vol. 28, issue 05, article # 4

Lyulin O.M. Determination of parameters of spectral lines from several absorption spectra with the MultiSpectrum Fitting computer code. // Optika Atmosfery i Okeana. 2015. V. 28. No. 05. P. 408-416 [in Russian].
Copy the reference to clipboard

In the present work, the MSF computer code is presented intended for determination of the spectral line parameters by their simultaneous fitting to the several absorption spectra recorded under different conditions. Line positions, intensities, pressure broadening and shift coefficients, and lower state energies of dipole transitions in a molecule can be determinable parameters. Basic concept, algorithm, and capabilities of the MSF computer code are outlined in the paper.


spectrum simulation, spectral line parameters, line position, intensity, broadening coefficient, pressure shift coefficient


  1. Lyulin O.M., Jacquemart D., Lacome N., Perevalov V.I., Mandin J.Y. Line parameters of acetylene in the 1.9 and 1.7-mm spectral regions // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 10. P. 1856–1874.
  2. Lyulin O.M., Perevalov V.I., Morino I., Yokota T., Kumazawa R., Watanabe T. Measurements of self-broadening and self-pressure-induced shift parameters of the methane spectral lines in the 5556–6166 cm−1 range // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 3. P. 531–539.
  3. Borkov Yu.G., Jacquemart D., Lyulin O.M., Tashkun S.A., Perevalov V.I. Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 3200–4700 cm−1 region. Global modeling of the line positions of 16O12C17O and 17O12C17O // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 137. P. 57–76.
  4. Lyulin O.M., Jacquemart D., Lacome N., Tashkun S.A., Perevalov V.I. Line parameters of 15N216O from Fourier transform measurements in the 5800–7600 cm−1 region and global fitting of line positions from 1000 to 7600 cm−1 // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 3. P. 345–356.
  5. Jacquemart D., Mandin J.Y., Dana V., Picqué N., Guelachvili G. A multispectrum fitting procedure to deduce molecular line parameters. Application to the 3–0 band of 12C16O // Eur. Phys. J. D. 2001. V. 14, iss. 1. P. 55–69.
  6. Gamache R.R., Kennedy S., Hawkins R.L., Rothman L.S. Total internal partition sums for molecules in the terrestrial atmosphere // J. Mol. Struct. 2000. V. 517–518, N 1–3. P. 407–425.
  7. Fischer J., Gamache R.R., Goldman A., Rothman L.S., Perrin A. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82, N 1–4. P. 401–412.
  8. Mandin J.Y., Dana V., Claveau C. Line intensities in the n5 band of acetylene 12C2H2 // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 67, N 6. P. 429–446.
  9. Jacquemart D., Mandin J.Y., Dana V., Régalia-Jarlot L., Thomas X., Von Der Heyden. Multispectrum fitting measurements of line parameters for 5-mm cold bands of acetylene // J. Quant. Spectrosc. Radiat. Transfer. 2002. V. 75, N 4. P. 397–422.
  10. Jacquemart D., Kwabia Tchana F., Lacome N., Kleiner I. A complete set of line parameters for CH3Br in the 10-µm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105, N 2. P. 264–302.
  11. Jacquemart D. Developpement d’une procedure d’aju-stement simultane de plusieurs spectres obtenus par transformation de Fourier. Determination des parametres de raies de l’acetylene dans les regions a 5 mm et 13.6 mm // These de Doctorat de l’Université Paris VI. France. 2002.
  12. Armstrong B.H. Spectrum line profiles: The Voigt function // J. Quant. Spectrosc. Radiat. Transfer. 1967. V. 7, N 1. P. 61–88.
  13. Rautian S.G., Sobel'man I.I. Vlijanie stolknovenij na doplerovskoe ushirenie spektral'nyh linij // Uspehi fiz. nauk. 1966. V. 90, issue 2. P. 209–236.
  14. Dicke R.H. The effect of collisions upon the Doppler width of spectral lines // Phys. Rev. 1953. V. 89, N 2. P. 472–473.
  15. Lyulin O.M., Kassi S., Sung K., Brown L.R., Cam-pargue A. Determination of the low energy values of 13CH4 transitions in the 2n3 region near 1.66 μm from absorption spectra at 296 and 81 K // J. Mol. Spectrosc. 2010. V. 261, N 2. P. 91–100.
  16. Dana V., Mandin J.Y. New improvements in the determination of line parameters from FTS data // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 48, N 5–6. P. 725–731.
  17. Hamdouni A., Barbe A., Plateaux J.J., Langlois V., Dana V., Mandin J.Y., Badaoui M. Measurements of N2-induced shifts and broadening coefficients of lines in CO fundamental from Fourier transform spectra // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 50, N 3. P. 247–255.
  18. Badaoui M. Mesure des parameters de raies d’absor-ption dans l’infrarouge a partir de spectres obtenus par transfomee de Fourier // These de l’Universite Pierre et Marie Curie. Paris, France. 1993.
  19. Guelachvili G. Distorsions in Fourier Spectra and diagnosis / G.A. Vanasse  ed. // Spectrometric techniques. V. II. N. Y.: Academic Press, 1981. P. 1–62.
  20. Mertz L. Transformations in optics. N. Y.: Wiley, 1965.
  21. Griffiths P.R., de Haseth J.A. Fourier transform infrared spectrometry. N. Y.: Wiley, 1986.
  22. Guelachvili G. Spectrometrie de Fourier, sous vide, a 106 points. Application a la mesure absolue de nombres d’ondes et a une nouvelle determination de с // These d’Etat. Universite Paris-Sud. Orsay, France. 1973.
  23. Nikitin A.V., Kochanov R.V. Vizualizacija i identifikacija spektrov programmoj SpectraPlot // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 936–941.