Vol. 28, issue 04, article # 1

Lavrent'eva N.N., Dudaryonok A.S., Buldyreva J.V. Calculation of methylcyanide line broadening coefficients: self- and nitrogen-broadening. // Optika Atmosfery i Okeana. 2015. V. 28. No. 04. P. 285-290 [in Russian].
Copy the reference to clipboard
Abstract:

Calculated self- and nitrogen-broadening coefficients of methylcyanide lines are presented. The calculations are performed at the room temperature (ΠΆ = 296 K) for ~ 1 400 lines, rotational quantum numbers vary in ranges 0 ≤ J ≤ 70; 0 ≤ K ≤10. The temperature exponents for every value of broadening in the case of the Earth and Titan atmospheres temperature ranges are calculated. The calculations are made by a semi-empirical method, which is a modification of impact theory, based on the use of measured values of line contour parameters. A good agreement is obtained with experimental data.

Keywords:

line-broadening, symmetric top, methylcyanide, line-contour, intermolecular interactions

References:

  1. Srivastava G.P., Gautam H.O., Kumar A. Microwave pressure broadening studies of some molecules // J. Phys. B. 1973. V. 6, N 4. P. 743–756.
  2. Buffa G., Dilieto A., Minguzzi P., Tonelli M. Acoustic detection in millimeter wave spectroscopy: Pressure broadening of CH3CN // Int. J. Infrared. Millim. Waves. 1981. V. 2, N 3. P. 559–569.
  3. Buffa G., Giulietti D., Lucchesi M., Martinelli M., Tarrini O., Zucconi M. High-resolution measurements of pressure self-broadening and shift for the methylcyanide rotational J = 1–0 line // Nuovo. Cim. D. 1988. V. 10. P. 511–518.
  4. Buffa G., Giulietti M., Lucchesi M., Martinelli M., Tarrini O. Collisional line shape for the rotational spectrum of methylcyanide // J. Chem. Phys. 1989. V. 90, iss. 12. P. 6881–6886.
  5. Haekel J., Mader H. Self-broadening and shift for the J = 0–1 rotational lines of CH3C14N and CH3C15N using the microwave transient emission technique // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 41, N 1. P. 9–15.
  6. Derozier D., Rohart F. Foreign gas and self-relaxation of CH3CN: Low-temperature dependence for the 92-GHz transition // J. Mol. Spectrosc. 1990. V. 140, iss. 1. P. 1–12.
  7. Buffa G., Tarrini O., Natale P., Inguscio M., Pavone F.S., Prevedelli M., Evanson K.M., Zink L.R., Schwaab G.W. Far infrared self-broadening in methylcyanide: Absorber–perturber resonance // Phys. Rev. A. 1992. V. 45, N 9. P. 6443–6450.
  8. Schwaab G.W., Evenson K.M., Zink L.R. Far-infrared self-broadening and pressure shift measurements of methyl cyanide // Int. J. Infrared. Millim. Waves. 1993. V. 14, N 8. P. 1643–1655.
  9. Fabian M., Morino I., Yamada K.M.T. Analysis of the line profiles of CH3CN for the J = 5 ← 4 and J = 6 ← 5 rotational transitions // J. Mol. Spectrosc. 1998. V. 190, N 2. P. 232–239.
  10. Rinsland C.P., Devi V.M., Benner D.C., Blake T.A., Sams R.L., Brown L.R., Kleiner I., Dehayem-Kamadjeu A., Müller H.S.P., Gamache R.R., Niles D.L., Masiello T. Multispectrum analysis of the n4 band of CH3CN: Positions, intensities, self- and N2-broadening, and pressure-induced shifts // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, iss. 6. P. 974–994.
  11. O’Leary D.M., Rutha A.A., Dixneuf S., Orphal J., Varma R. The near infrared cavity-enhanced absorption spectrum of methyl cyanide // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, iss. 11. P. 1138–1147.
  12. Colmont J.-M., Rohart F., Wlodarczak G., Bouanich J.P. K-dependence and temperature dependence of N2-, H2-, and He-broadening coefficients for the J = 12–11 transition of acetonitrile CH3C14N located near 220.7 GHz // J. Mol. Spectrosc. 2006. V. 238, iss. 1. P. 98–107.
  13. Bykov A., Lavrentieva N., Sinitsa L. Semi-empiric approach to the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658.
  14. Dudaryonok A.S., Lavrentieva N.N., Buldyreva J.V. CH3Cl self-broadening coefficients and their temperature dependence // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 321–326.
  15. Dudaryonok A.S., Lavrentieva N.N., Buldyreva J., Margulès L., Motiyenko R.A., Rohart F. Experimental studies, line-shape analysis and semi-empirical calculations of broadening coefficients for CH335Cl–CO2 submillimeter transitions // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 145. P. 50–56.
  16. Simeckova M., Urban S., Fuchs U., Lewen F., Winnewisser G., Morino I., Yamada K.M.T. Ground state spectrum of methylcyanide // J. Mol. Spectrosc. 2004. V. 226, iss. 2. P. 123–136.
  17. Reuter D., Jennings D.E., Brault J.W. The n = 1 ← 0 quadrupole spectrum of N2 // J. Mol. Spectrosc. 1986. V. 115, iss. 2. P. 294–304.
  18. Harries J.E. The temperature dependence of collision-induced absorption in gaseous N2 // J. Opt. Soc. Amer. 1979. V. 69. P. 386–393.
  19. Buldyreva J. Air-broadening coefficients of CH335Cl and CH337Cl rovibrational lines and their temperature dependence by a semi-classical approach // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 315–320.
  20. Bykov A.D., Lavrentieva N.N., Saveliev V.N., Sinitsa L.N., Camy-Peyret C., Claveau Ch., Valentin A. Half-width temperature dependence of nitrogen broadened lines in the n2 band of H2O // J. Mol. Spectrosc. 2004. V. 224, iss. 2. P. 164–175.
  21. Buldyreva J., Lavrentieva N.N. Nitrogen and oxygen broadening of ozone infrared lines in the 5 mm region: Theoretical predictions by semiclassical and semiempirical methods // Mol. Phys. 2009. V. 107, N 15. P. 1527–1536.
  22. Bykov A.D., Strojnova V.N. Analiz polushiriny i sdviga centrov linij dvuhatomnyh molekul, obuslovlennyh perehodami na vysokovozbuzhdennye kolebatel'nye sostojanija // Optika atmosf. i okeana. 2004. V. 17, N 12. P. 1040–1045.
  23. Abdullaev S.F., Nazarov B.I., Salihov T.H., Maslov V.A. Korreljacii temperatury prizemnoj atmosfery i opticheskoj tolshhi aridnogo ajerozolja po dannym AERONET // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 428–433.
  24. Marichev V.N. Analiz povedenija plotnosti vozduha i temperatury v stratosfere nad Tomskom v periody ee vozmushhennogo i spokojnogo sostojanij, vypolnennyj po rezul'tatam lidarnyh izmerenij // Optika atmosf. i okeana. 2013. V. 26, N 9. P. 783–792.
  25. Fulchignoni M., Ferri F., Angrilli F., Ball A.J., Bar-Nun A., Barucci M.A., Bettanini C., Bianchini G., Borucki W., Colombatti G., Coradini M., Coustenis A., Debei S., Falkner P., Fanti G., Flamini E., Gaborit V., Grard R., Hamelin M., Harri A.M., Hathi B., Jernej I., Leese M.R., Lehto A., Lion Stoppato P.F., López-Moreno J.J., Mäkinen T., McDonnell J.A.M., McKay C.P., Molina-Cuberos G., Neubauer F.M., Pirronello V., Rodrigo R., Saggin B., Schwingenschuh K., Seiff A., Simões F., Svedhem H., Tokano T., Towner M.C., Trautner R., Withers P., Zarnecki J.C. In situ measurements of the physical characteristics of Titan’s environment // Nature (Gr. Brit.). 2005. V. 438, iss. 7069. P. 785–791.
  26. Mäder H., Bomsdorf H., Andressen U. The measurement of rotational relaxation time T2 for CH3C15N self- and foreign gas collisions // Z. Naturforsch. A. 1979. V. 34. P. 850–857.

Back