Vol. 28, issue 02, article # 5

Zhilkin S.V., Kharlamov G.V. Investigation of the diffusion of Lennard-Jones particles in phase transition conditions by the molecular dynamics method. // Optika Atmosfery i Okeana. 2015. V. 28. No. 02. P. 138-142 [in Russian].
Copy the reference to clipboard
Abstract:

In this paper, we have calculated the diffusion coefficients of the Lennard-Jones gas in a wide range of density and temperature. A universal dependence of the diffusion coefficients on the density for homogeneous systems was found. A deviation from this dependence in terms of the vapor – liquid phase transition was obtained. Two relaxation phases of autocorrelation velocity function of the system in terms of the phase transition were analyzed and explained.

Keywords:

diffusion coefficient, Lennard-Jones potential, phase transition, autocorrelation function of the velocity

References:

1. Dovgaljuk Ju.A., Ivlev L.S. Fizika vodnyh i drugih atmosfernyh ajerozolej. SPb.: Izdatelstvo SPb. universiteta, 1998. 322 p.
2. Meier K., Laesecke A., Kabelac S. Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion // J. Chem. Phys. 2004. V. 121, N 19. P. 9526–9535.
3. Heyes D.M. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment // Phys. Rev. B. 1988. V. 37, N 10. P. 5677–5696.
4. Liu H., Silva C.M., Macedo E.A. Unified approach to the self-diffusion coefficients of dense fluids over wide ranges of temperature and pressure – hard-sphere, square-well, Lennard-Jones and real substances // Chem. Eng. Sci. 1998. V. 53, N 13. P. 2403–2422.
5. Laghaei R., Nasrabad A.E., Eu B.C. Excluded volume in the generic van der Waals equation of state and the self-diffusion coefficient of the Lennard-Jones fluid // J. Chem. Phys. 2006. V. 124, N 15. P. 154502.
6. Dyer K.M., Pettitt B.M., Stell G. Systematic investigation of theories of transport in the Lennard-Jones fluid // J. Chem. Phys. 2007. V. 126. 034502.
7. Rahman A. Correlations in the motion of atoms in liquid argon // Phys. Rev. A. 1964. V. 136, N 2. P. A405.
8. Pomeau Y., Resibois P. Time dependent correlation functions and mode-mode coupling theories // Phys. Rep. 1975. V. 19, N 2. P. 63–139.
9. Yamaguchi T., Kimura Y., Hirota N. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids // Mol. Phys. 1998. V. 94, N 3. P. 527–537.
10. Girshfel'der Dzh., Kertiss Ch., Berd Ch. Molekuljarnaja teorija gazov i zhidkostej. M.: Izdatelstvo inostr. literatury, 1954. 929 p.
11. URL: http: // www.chemway.ru/bd_chem/tbl_mol/tbl_mol_ld_1.php
12. Winn E.B. The Temperature Dependence of the Self-Diffusion Coefficients of Argon, Neon, Nitrogen, Oxygen, Carbon Dioxide, and Methane // Phys. Rev. 1950. V. 80, N 6. P. 1024–1027.
13. Hutchinson F. The self diffusion coefficient of argon // Phys. Rev. 1947. V. 72, N 12. P. 1256.
14. Mifflin R.K., Bennett C.O. Self Diffusion in Argon to 300 Atmospheres // J. Chem. Phys. 1958. V. 29, N 5. P. 975.

Back