Vol. 28, issue 02, article # 3

Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Simulation of coherent structures (topological solitons) inside closed rooms by solving numerically hydrodynamic equations. // Optika Atmosfery i Okeana. 2015. V. 28. No. 02. P. 120-133 [in Russian].
Copy the reference to clipboard
Abstract:

Coherent structures (three-dimensional topological solitons) inside closed rooms had been simulated by solving numerically hydrodynamic equations (Navier–Stokes equations). A closed room is a volume without the exchange of internal and external medium through the borders. Results of eight boundary value problems are given: spectrograph pavilion and telescope dome of large astronomical telescopes (LSVT and BTA), cubic room, flat square cuvette, square section tube, parietal turbulence (thermals), dome (hemisphere with a viscous medium), and open space above one heated spot. Solitary large vortices (coherent structures or topological solitons) are observed inside the volume. The patterns of air motion as a result of simulation of coherent structures with identical boundary conditions are practically the same as the patterns, independently recorded earlier in our experiments (indoors LSVT and BTA). Also inside other volumes the patterns of medium motion as a result of simulation of coherent structures are practically the same as the patterns, previously recorded at experiments by other authors.
Simulations confirm the previously formulated experimental conclusion that mixing of many coherent structures with different close sizes (and with close frequencies of main vortices) gives non-coherent Kolmogorov turbulence. In addition, relatively long inertial intervals of spectrum with Kolmogorov 5/3-exponential decay are observed in highly viscous media.

Keywords:

turbulence, coherent turbulence, coherent structure, topological soliton, simulation of coherent structures, hydrodynamics equations, Navier–Stokes equations, topological precursor

References:

  1. Monin A.S., Jaglom A.M. Statisticheskaja gidromehanika. V. 1. M.: Nauka, 1965. 639 p.; V. 2. SPb.: Gidrometeoizdat, 1996, 742 p.
  2. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroklimat specializirovannyh pomeshhenij Bol'shogo solnechnogo vakuumnogo teleskopa. Part 1 // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 1013–1021; Part 2 // Optika atmosf. i okeana. 2008. V. 21, N 3. P. 207–217.
  3. Nosov V.V., Grigor’ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized rooms of the Large solar vacuum telescope. Part 1 // Atmos. Ocean. Opt. 2007. V. 20, N 11. P. 926–934; Part 2 // Atmos. Ocean. Opt. 2008. V. 21, N 3. P. 180–190.
  4. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part I // Proc. SPIE. 2007. V. 69360P. P. 1–11; Part II // Proc. SPIE. 2008. V. 69360Q. P. 1–12.
  5. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory // Proc. SPIE. 2007. V. 69361R. P. 1–4.
  6. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye struktury v turbulentnoj atmosfere. Jeksperiment i teorija // Solnechno-zemnaja fizika. 2009. Iss. 14. P. 97–113.
  7. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in turbulent atmosphere // Proc. SPIE. 2009. V. 7296-09. P. 53–70.
  8. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in the turbulent atmosphere // Mathematical Models of Non-linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere, Eds. A.B. Nadycto et al. N.Y.: Nova Science Publishers. USA. 2013. Chap. 20. P. 297–330.
  9. Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmosfernaja kogerentnaja turbulentnost' // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 753–759.
  10. Nosov V.V., Lukin V.P., Torgaev A.V., Kovadlo P.G. Atmospheric coherent turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
  11. Nosov V.V., Lukin V.P., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Result of measurements of the astroclimate characteristics of astronomical telescopes in the mountain observatories // Proc. SPIE. 2009. V. 7296-11. P. 82–87.
  12. Nosov V.V., Lukin V.P., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Astroclimate parameters of the surface layer in the Sayan solar observatory // Proc. SPIE. 2009. V. 7296-12. P. 87–94.
  13. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnaja turbulentnost' vblizi priemnoj apertury astronomicheskogo teleskopa // Izv. vuzov. Fiz. 2012. V. 55, N 9/2. P. 212–214.
  14. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnaja turbulentnost' na territorii Bajkal'skoj astrofizicheskoj observatorii // Izv. vuzov. Fiz. 2012. V. 55, N 9/2. P. 204–205.
  15. Носов В.В., Лукин В.П., Торгаев А.В. Kogerentnye struktury v atmosfere, voznikajushhie pri obtekanii prepjatstvij // Materialyly XVI Mezhdunar. simpoz. «Optika atmosf. i okeana. Fizika atmosfery». Tomsk: Izdatelstvo IOA SO RAN, 2009. P. 645–648.
  16. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Results of measurements of A.N. Kolmogorov and A.M. Obukhov constants in the Kolmogorov–Obukhov law // Proc. SPIE. 2009. V. 7296-09. P. 70–77.
  17. Nosov V.V., Lukin V.P., Torgaev A.V. Structure function of temperature fluctuations in coherent turbulence // Proc. SPIE. 2009. V. 7296-13. P. 94–97.
  18. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye struktury – jelementarnye sostavljajushhie atmosfernoj turbulentnosti // Izv. vuzov. Fiz. 2012. V. 55, N 9/2. P. 236–238.
  19. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. The Solitonic Hydrodynamical Turbulence // Proc. VI Int. Conf. «Solitons Collapses and Turbulence: Achievements Developments and Perspectives». Novosibirsk, 2012. P. 108–109.
  20. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Problema kogerentnoj turbulentnosti // Vestn. MGTU «Stankin». 2013. V. 24, N 1. P. 103–107.
  21. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye sostavljajushhie turbulentnosti // Tezisy dokl. Mezhdunar. konf., posvjashhennoj pamjati akademika A.M. Obuhova «Turbulentnost', dinamika atmosfery i klimata». I. Turbulentnost'. M.: IFA RAN, 2013. P. 43–47.
  22. Nosov V.V., Lukin V.P., Torgaev A.V. Decrease of the light wave fluctuations in the coherent turbulence // Proc. SPIE. 2009. V. 7296-10. P. 77–82.
  23. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Rekomendacii po vyboru mest razmeshhenija nazemnyh astronomicheskih teleskopov // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1099–1110.
  24. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Optimal'noe razmeshhenie nazemnyh korotkovolnovyh priemnikov atmosfernyh telekommunikacionnyh sistem // Radiotehnicheskie i telekommunikacionnye sistemy. 2011. N 3. P. 76–82.
  25. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Fluktuacii astronomicheskih izobrazhenij v kogerentnoj turbulentnosti // Izv. vuzov. Fiz. 2012. V. 55, N 9/2. P. 223–225.
  26. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Integral'naja intensivnost' atmosfernoj turbulentnosti po dannym vysokogornyh opticheskih izmerenij // Tezisy dokl. XVII Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Tomsk, 2011. P. B113–B116.
  27. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Intensivnost' kolmogorovskoj i kogerentnoj turbulentnosti po dannym atmosfernyh vysokogornyh nabljudenij // Materialy V Vseros. nauchn. konf. «Radiofizicheskie metody v distancionnom zondirovanii sred». II Vserossijskie Armandovskie chtenija. Murom, 2012. [Jelektronnyj resurs]. 1 CD-ROM. P. 72–75. ISSN 2304–0297.
  28. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Intermittency of the astronomical images jitter in the high-mountain observations // Proc. SPIE. 2014. V. 9292. P. AO200-47.
  29. Popinet S. The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2002–2014. URL: http://gfs.sf.net
  30. Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries // J. Comput. Phys. 2003. V. 190, N 2. P. 572–600.
  31. Popinet S., Smith M., Stevens C. Experimental and numerical study of the turbulence characteristics of air flow around a research vessel // J. Ocean Atmos. Technol. 2004. V. 21, N 10. P. 1574–1589.
  32. Popinet S. 100 Gerris Tests. V. 1.3.2. URL: http:// gerris.dalembert.upmc.fr/gerris/tests/tests/index.html; Gerris: Bibliography. URL: http://gfs.sf.net/wiki/index.php/Bibliography; List of recent publications. URL: http:// gfs.sf.net/wiki/index.php/User:Popinet
  33. Van Dyke M. An album of fluid motion. The Parabolic Press, 1982. 175 p.; Van-Dajk M. Al'bom techenij zhidkosti i gaza. M.: Mir, 1986. 184 p.

Back