Vol. 27, issue 10, article # 14

Artyshchenko S.V., Golovinski P.A., Chernov R.A. Reconstruction of the wavefront phase with the use of a complex neural network. // Optika Atmosfery i Okeana. 2014. V. 27. No. 10. P. 932–936 [in Russian].
Copy the reference to clipboard
Abstract:

We considered the process of wavefront reconstruction, which is based on the use of Shack–Hartmann sensor and complex-valued artificial neural network. The pixel positions are mapped on a complex plane. The process of phase reconstruction has been tested with the help of the distorted wavefront, which was obtained in the framework of a statistical model for a turbulent atmosphere. The learning of the network is based on a genetic algorithm. The process has the fast convergence, resistance to the local errors, and dynamic adaptability.

Keywords:

Shack–Hartmann sensor, wavefront reconstruction, turbulent atmosphere, complex neural network, genetic algorithm

References:

1. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 277 p.
2. Marakasov D.A. Struktura prostranstvenno-vremennogo spektra lazernogo puchka v atmosfere v uslovijah sil'noj turbulentnosti // Optika atmosf. i okeana. 2013. Т. 26, N 5. P. 345–349.
3. Wilks S.C., Morris J.R., Brase J.M., Olivier S.S., Henderson J.R., Thompson C., Kartz M., Ruggerio A.J. Modeling of adaptive optics-based free-space communications systems // Proc. SPIE. 2002. V. 4421. P. 121–128.
4. Wu H., Yan H., Li X. Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence // Optik. 2010. V. 121. P. 1789–1793.
5. Zel'dovich B.Ja., Pilipeckij N.F., Shkunov V.V. Obrashhenie volnovogo fronta pri vynuzhdennom rassejanii sveta // Uspehi fiz. nauk. 1982. V. 138, issue 2. P. 249–288.
6. Dmitriev V.G. Nelinejnaja optika i obrashhenie volnovogo fronta. M.: Fizmatlit, 2003. 256 p.
7. Lukin V.P. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere i okeane // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 937–944.
8. Garanin S.G., Golubev A.I., Povyshev V.M., Starikov F.A., Shnjagin R.A. Issledovanie vozmozhnosti povyshenija jeffektivnosti adaptivnoj sistemy lazernoj ustanovki «Luch» // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 427–433.
9. Grosset-Grange С., Barnier J., Chappuis C., Cortey H. Design principle and first results obtained on the LMJ deformable mirror prototype // Proc. SPIE. 2007. V. 6584. P. 1–14.
10. Lukin V.P. Atmosfernaja i adaptivnaja optika. Novosibirsk: Nauka, 1986. 248 p.
11. Lee L.H. Closed-loop field conjugation using decentralized multi-conjugate adaptive optics // Proc. SPIE. 2007. V. 6551. P. 65510Q.
12. Hirose A. Complex-valued neural networks fertilize electronics // Studies in Computational Intelligence. 2006. V. 32. P. 3–8.
13. Hirose A. Complex-Valued Neural Networks. Berlin: Springer, 2006. 176 p.
14. Neal D.R., Copland J., Neal D. Shack–Hartman wavefront sensor precision and accuracy // Proc. SPIE. 2002. V. 4779. P. 148–160.
15. Southwell W. Wave-front estimation from wave-front slope measurement // J. Opt. Soc. Amer. 1980. V. 70, N 8. P. 998–1006.
16. Kutishhev S.N., Golovinskij P.A. Opredelenie parametrov tel prostoj formy po rassejaniju ul'trakorotkih impul'sov // Izv. vuzov. Radiofiz. 2008. V. 51, N 6. P. 526–535.
17. Kutishhev S.N., Golovinskij P.A. Primenenie nejrosetej dlja opredelenija formy ob#ektov po otrazheniju ul'trakorotkih impul'sov // Nejrokomp'jutery: razrabotka, primenenie. 2008. N 3–4. P. 108–114.
18. Golovinskij P.A. Kogerentnyj nejron i raspoznavanie obrazov // Problemy upravlenija. 2006. N 5. P. 86–88.
19. Astapenko V.A., Golovinskij P.A. Nejronnye seti s kvantovoj interferenciej // Nejrokomp'jutery: razrabotka, primenenie. 2012. N 4. P. 3–12.
20. Naruse M., Miyazaki T., Kubota F., Kawazoe T., Kobayashi K., Sangu S., Ohtsu M. Nanometric summation architecture based on optical near-field interaction between quantum dots // Opt. Lett. 2005. V. 30, N 2. P. 201–203.
21. Aizenberg I. Complex-Valued Neural Networks with Multi-Valued Neurons. Berlin: Springer-Verlag, 2011. 262 p.
22. Hirose A. Complex-Valued Neural Networks: Advances and Applications. Hoboken: Wiley-IEEE Press, 2013. 304 p.
23. Shabat B.V. Vvedenie v kompleksnyj analiz. SPb.: Lan', 2004. 336 p.
24. Hirose A. Application of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme // Information Sci. 1994. V. 2. P. 103–117.
25. Jalab H.A., Ibrahim R.W. New activation functions for complex-valued neural network // Int. J. Phys. Sci. 2011. V. 6, N 7. P. 1766–1772.
26. Szilagai M.N., Salik B. Neural Networks with complex activations and connection weights // Complex Systems. 1994. V. 8. P. 115–126.
27. Amin Md.F., Islam Md.M., Murase K. Ensemble of single-layered complex-valued neural networks for classification tasks // Neurocomputing. 2009. V. 72. P. 2227–2234.
28. Savitha R., Suresh S., Sundararajan N., Saratchandran P. A new learning algorithm with logarithmic performance index for complex-valued neural networks // Neurocomputing. 2009. V. 72. P. 3771–3781.
29. Chen X., Tang Zh., Li S. An modified error function for the complex-value backpropagation neural networks // Neural Information Processing. 2005. V. 8, N 1. P. 1–8.
30. Kalitkin N.N. Chislennye metody. SPb: BChV-Peterburg, 2011. 592 p.
31. Melanie M. An introduction to genetic algorithms. Massachusetts: MIT Press, 1996. 158 p.
32. Ellerbroek B.L., Cochran G. Wave optics propagation code for multiconjugate adaptive optics // Proc. SPIE. 2002. V. 4494. P. 104–120.
33. Shanin O.I. Adaptivnye opticheskie sistemy korrekcii naklonov. Rezonansnaja adaptivnaja optika. M.: Tehnosfera, 2013. 296 p.

Back