Vol. 27, issue 10, article # 13

Lavrinov V.V., Lavrinova L.N., Tuev M.V. Numerical simulation of the algorithm to compute the voltage control for the flexible mirror depending on the representation of information on the wavefront. // Optika Atmosfery i Okeana. 2014. V. 27. No. 10. P. 925–931 [in Russian].
Copy the reference to clipboard
Abstract:

Shack–Hartmann sensor represents a wavefront as centroids of the focal spots. Wavefront information can be presented as the difference of the coordinate data on centers of sub-apertures or the local wavefront tilts, or coefficients of the basis functions in the decomposition of the measured wavefront, or the values of the basis functions in its two-dimensional distribution. Voltages calculated from the sensor measurements, that control for the flexible mirror will change depending on the form of information on the wavefront. The paper presents the numerical results giving an assessment of the effectiveness of the algorithm for calculating the mirror control voltages depending on the presentation of the wavefront. The studies performed are based on the analysis of experimental data on an atmospheric path.

Keywords:

flexible mirror control, response function, wavefront sensor

References:

1. Aleksandrov A.G., Zavalova V.E., Kudrjashov A.V., Panchenko V.V., Rukosuev A.L., Samarkin V.V. Adaptivnaja optika dlja moshhnyh lazerov so sverhkorotkimi impul'sami izluchenija // Sb. trudov IPLIT RAN. M., 2005. P. 55–61.
2. Berchenko E.A., Kalinin Ju.A., Kiseljov V.Ju., Polynkin M.A., Prilepskij B.V., Filatov A.S. Datchiki volnovogo fronta // Lazerno-opticheskie sistemy i tehnologii: Sb. statej FGUP «NPO Astrofizika». M., 2009. P. 64–69.
3. Bezuglov D.A., Zabrodin R.A. Metodika approksimacii gibkogo adaptivnogo p'ezokeramicheskogo zerkala ogranichennym chislom polinomov Cernike // Optika atmosf. i okeana. 2006. V. 19, N 9. P. 810–814.
4. Bezuglov D.A., Saharov I.A. Reshetnikova I.V. Metod optimizacii topologii fazovogo fronta // Optika atmosf. i okeana. 2008. V. 21, N 11. P. 998–1003.
5. Lavrinova L.N., Lukin V.P. Adaptivnaja korrekcija teplovyh i turbulentnyh iskazhenij lazernogo izluchenija deformiruemym zerkalom. Tomsk: Izd-vo IOA SO RAN, 2008. 152 p.
6. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo IOA SO RAN, 1999. 211 p.
7. Suetin P.K. Klassicheskie ortogonal'nye mnogochleny. M.: Nauka, 1979. 416 p.
8. Bogachev K.Ju. Praktikum na JeFM. Metody reshenija linejnyh sistem i nahozhdenija sobstvennyh znachenij. M.: Izd-vo CPI pri MGU im. M.V. Lomonosova, 1998. 137 p.
9. Sheldakova Ju.V., Kudrjashov A.V., Rukosuev A.L., Samarkin V.V., Cherezova T.Ju. Ispol'zovanie gibridnogo algoritma upravlenija bimorfnym zerkalom dlja fokusirovki svetovogo izluchenija // Optika atmosf. i okeana. 2007. V. 20, N 4. P. 380–383.
10. Sobolev A.S., Cherezova T.Ju., Kudrjashov A.V. Analiticheskaja i chislennaja modeli gibkogo bimorfnogo zerkala // Optika atmosf. i okeana. 2005. V. 18, N 3. P. 277–281.
11. Rasprostranenie opticheskih voln v neodnorodnyh, sluchajnyh, nelinejnyh sredah / Pod obshh. red. A.A. Zemljanova. Tomsk: Izd-vo IOA SO RAN, 2012. P. 150–165.
12. Antoshkin L.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Tuev M.V. Optimizacija upravlenija aktivnym bimorfnym zerkalom na osnove datchika Gartmana // Metody i ustrojstva peredachi i obrabotki informacii. M.: Radiotehnika, 2009. Issue 11. P. 25–34.
13. Kopylov E.A., Lukin V.P. Statisticheskie harakteristiki bimorfnogo zerkala DM2-100-31 i vozmozhnost' ego primenenija v adaptivnoj opticheskoj sheme Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1111–1113.
14. Taranenko V.G., Shanin O.I. Adaptivnaja optika. M.: Radio i svjaz', 1990. 112 p.
15. Bezuglov D.A., Skljarov A.V. Algoritm vosstanovlenija volnovogo fronta na baze dvumernyh sglazhivajushhih kubicheskih normalizovannyh B-splajnov // Optika atmosf. i okeana. 2000. V. 13, N 8. P. 770–774.

Back