Vol. 27, issue 10, article # 1

Geints Yu.E., Zemlyanov A.A. Influence of molecular absorption of the ground atmospheric path on characteristics of the filamentation range of high-power CO2-laser radiation. // Optika Atmosfery i Okeana. 2014. V. 27. No. 10. P. 851–858 [in Russian].
Copy the reference to clipboard
Abstract:

The theoretical aspects of self-focusing and filamentation of high-power pulsed CO2-laser radiation with the carrier wavelength 10.6 μm in air are considered. The frequency-differential molecular absorption of atmospheric air is included in the theoretical model. It is shown that in the conditions of pulse self-phase modulation, the super-broad pulse spectrum is strongly affected by atmospheric absorption that destabilizes the filamentation process and leads to the considerable reducing of the plasma channel length formed in the beam wake.

Keywords:

ultra-short laser radiation, self-focusing, filamentation, ionization, laser plasma

References:

1. Selffocusing: Past and Present / Еds. Y.R. Shen, R.W. Boyd, S.G. Lukishova. Springer, 2009. 605 p.
2. Bergé L., Skupin S., Nuter R., Kasparian J., Wolf J.-P. Ultrashort filaments of light in weakly-ionized, optically-transparent media // arXiv: Physics 0612063v1. 2007.
3. Couairon A., Myzyrowicz A. Femtosecond filamentation in transparent media // Phys. Reports. 2007. V. 441, N 2–4. P. 47–189.
4. Kandidov V.P., Shljonov S.A., Kosareva O.G. Filamentacija moshhnogo femtosekundnogo lazernogo izluchenija // Kvant. jelektron. 2009. V. 39, N 3. P. 205–228.
5. Chin S.L., Wang T.-J., Marceau C., Wu J., Liu J.S., Kosareva O., Panov N., Chen Y.P., Daigle J.-F., Yuan S., Azarm A., Liu W.W., Seideman T., Zeng H.P., Richardson M., Li R., Xu Z.Z. Advances in intense femtosecond laser filamentation in air // Laser Phys. 2012. V. 22, N 1. P. 1–53.
6. Gejnc Ju.Je., Zemljanov A.A., Kabanov A.M., Matvienko G.G. Nelinejnaja femtosekundnaja optika atmosfery / Pod obshhej red. prof. A.A. Zemljanova. Tomsk: Izd-vo Instituta optiki atmosfery SO RAN, 2010. 212 p.
7. Couairon A., Chakraborty H.S., Gaarde M.B. From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases // Phys. Rev. A. 2008. V. 77. 053814.
8. Kasparian J., Rodriguez M., Méjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., André Y.-B., Mysyrowicz A. White-light filaments for atmospheric analysis // Science. 2003. V. 301. P. 61–64.
9. Andriukaitis G., Balčiūnas T., Ališauskas S., Pugžlys A., Baltuška A., Popmintchev T., Chen M.-C., Murnane M.M., Kapteyn H.C. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier // Opt. Lett. 2011. V. 36, N 15. Р. 2755–2757.
10. Fuji T., Suzuki T. Generation of sub-two-cycle mid-in-frared pulses by four-wave mixing through filamentation in air // Opt. Lett. 2007. V. 32, N 22. Р. 3330–3332.
11. Bravy B.G., Chernyshev Yu.A., Gordienko V.M., Makarov E.F., Panchenko V.Ya., Platonenko V.T., Vasil'ev G.K. Multi-terawatt picoseconds 10-μm СО2-laser system: design and parameters' control // Opt. Express. 2012. V. 20, N 23. P. 25536–25544.
12. Polyanskiy M.N., Babzien M. Ultrashort pulses // CO2-laser – optimization and application / Ed. D.C. Dumitras // InTech. 2012. P. 139–162.
13. Gordienko V.M., Platonenko V.T., Sterzhantov A.F. Samovozdejstvie moshhnogo desjatimikronnogo lazernogo izluchenija v gazovyh sredah: upravlenie dlitel'nost'ju impul'sa i generacija gorjachih jelektronov // Kvant. jelektron. 2009. V. 39, N 7. P. 663–668.
14. Gejnc Ju.Je., Zemljanov A.A. Chislennoe modelirovanie samovozdejstvija teravattnyh pikosekundnyh impul'sov CO2-lazera v vozduhe // Optika atmosf. i okeana. 2013. V. 26, N 9. P. 716–725.
15. Zuev V.E., Makushkin Ju.S., Ponomarev Ju.N. Sovremennye problemy atmosfernoj optiki. V. 3. Spektroskopija atmosfery. L.: Gidrometeoizdat, 1987. 248 p.
16. Berge L., Rolle J., Kohler C. Enhanced self-compression of mid-infrared laser filaments in argon // Phys. Rev. 2013. A. V. 88. 023816.
17. Loriot V., Hertz E., Faucher O., Lavorel B. Measurement of high-order Kerr refractive index of major air components: erratum // Opt. Express. 2010. V. 18, N 3. P. 3011–3012.
18. Rajzer Ju.P. Fizika gazovogo razrjada. M.: Nauka, 1987. 592 p.
19. Perelomov A.M., Popov V.S., Terent'ev M.V. Ionizacija atomov v peremennom jelektricheskom pole // Zh. teor. i jeksperim. fiz. 1966. V. 50, iss. 5. P. 1393–1397.
20. Itikawa Y. Cross sections for electron collisions with nitrogen molecules // J. Phys. Chem. Ref. Data. 2006. V. 35, N 1. Р. 31–53.
21. Keldysh L.V. Ionizacija v pole sil'noj jelektromagnitnoj volny // Zh. teor. i jeksperim. fiz. 1964. V. 47, iss. 5. P. 1945–1956.
22. Sun Z., Chen J., Rudolph W. Determination of the transient electron temperature in a femtosecond-laser-induced air plasma filament // Phys. Rev. E. 2011. V. 83. 046408.
23. Atmosfera: Spravochnik. Ch. I. L.: Gidrometeoizdat, 1991. 510 p.
24. U.S. Standard Atmosphere, 1962, U.S. Government Printing Office, Washington, D.C., 1962.
25. HITRAN on the Web, URL: http://hitran.iao.ru
26. Moll K.D., Gaeta A.L. Role of dispersion in multiple-collapse dynamics // Opt. Lett. 2004. V. 29, N 9. P. 995–997.

Back