Vol. 27, issue 08, article # 6

Zuev V.V., Zueva N.E., Saveljeva E.S. Temperature and ozone anomalies as indicators of volcanic soot in the stratosphere. // Optika Atmosfery i Okeana. 2014. V. 27. No. 08. P. 698-704 [in Russian].
Copy the reference to clipboard
Abstract:

The role of volcanogenic aerosols in the formation of ozone and temperature anomalies in the tropical stratosphere registered after the eruption of Mount Pinatubo in June 1991 is analyzed in the paper by the 30-year period of balloon measurements at Hilo station in Hawaii. Positive temperature deviations and negative ozone deviations in vertical profiles of greater than or equal to 2σ from perennial average are considered as anomalies. The stratospheric anomalies observed in the second half of 1991 agree well with the presence of volcanic ash, remained in the stratosphere for about six months. However, temperature anomalies and stratospheric ozone depression, observed subsequently during 2–3 years, cannot be explained by long-lived sulfuric acid aerosol. The formation mechanism in the stratosphere of long-lived volcanic soot formed by thermal decomposition of methane in the eruption column, intensively absorbing solar radiation and destroying ozone on its surface is suggested in the article. The largest ozone anomaly observed in the lower stratosphere during the second half of 1992 is explained by the calculated deposition rate of soot subject to high efficiency of ozone depletion on its surface.

Keywords:

vertical temperature profiles, vertical profiles of ozone, eruption of Mount Pinatubo, stratospheric volcanogenic aerosol, soot

References:

1. Trickl T., Giehl H., Jäger H., Vogelmann H. 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond // Atmos. Chem. Phys. 2013. V. 13, N 10. P. 5205–5225.
2. Zuev V.V. Lidarnyj kontrol' stratosfery. Novosibirsk: Nauka, 2004. 306 p.
3. Holasek R.E., Self S., Woods A.W. Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes // J. Geophys. Res. B. 1996. V. 101, N 12. P. 27635–27655.
4. McCormick M.P., Thomason L.W., Trepte C.R. Atmospheric Effects of the Mt. Pinatubo Eruption // Nature. 1995. V. 373, N 6513. P. 399–404.
5. Fero J., Carey S.N., Merrill J.T. Simulating the dispersal of tephra from the 1991 Pinatubo eruption: Implications for the formation of widespread ash layers // J. Volcanol. Geoth. Res. 2009. V. 186, N 1–2. P. 120–131.
6. Wiesner M.G., Wetzel A., Catane S.G., Listanco E.L., Mirabueno H.T. Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea // Bull. Volcanol. 2004. V. 66, N 3. P. 226–242.
7. Patterson E.M., Pollard C.O., Galindo I. Optical properties of the ash from El Chichon volcano // Geophys. Res. Lett. 1983. V. 10, N 4. P. 317–320.
8. Michel A.E., Usher C.R., Grassian V.H. Reactive uptake of ozone on mineral oxides and mineral dusts // Atmos. Environ. 2003. V. 37, N 23. P. 3201–3211.
9. Russell P.B., Livingston J.M., Pueschel R.F., Bauman J.J., Pollack J.B., Brooks S.L., Hamill P., Thomason L.W., Stowe L.L., Deshler T., Dutton E.G., Bergstrom R.W. Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses // J. Geophys. Res. D. 1996. V. 101, N 13. P. 18745–18763.
10. Harker A.B., Ho W.W. Heterogeneous ozone decomposition on sulfuric acid surfaces at stratospheric temperatures // Atmos. Environ. 1979. V. 13, N 7. P. 1005–1010.
11. Olszyna K., Cadle R.D., DePena R.G. Stratospheric heterogeneous decomposition of ozone // J. Geophys. Res. C. 1979. V. 84, N 4. P. 1771–1775.
12. Wang L.K., Shammas N.K., Hung Y.-T. Biosolids treatment processes // Hardbook of environmental engineering. V. 6. Totowa, New Jersey: Humana Press, 2007. 830 p.
13. Kravitz B., Robock A., Shindell D.T., Miller M.A. Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection // J. Geophys. Res. D. 2012. V. 117, N 9. P. 1–22.
14. Bekki S. On the possible role of aircraft-generated soot in the middle latitude ozone depletion // J. Geophys. Res. D. 1997. V. 102, N 9. P. 10751–10758.
15. Mather T.A., Pyle D.M., Oppenheimer C. Tropospheric Volcanic Aerosol // Volcanism and the Earth’s Atmosphere. Geophys. Monogr. Ser. 2003. V. 139. P. 189–212.
16. Hartmann D.L., Mouginis-Mark P.J. Volcanoes and climate effects of aerosols // EOS science plan: executive summary / Ed. R. Greenstone, M.D. King. Washing-ton, D.C.: NASA, 1999. P. 339–378.
17. Martin R.S., Mather T.A., Pyle D.M., Power M., Allen A.G., Aiuppa A., Horwell C.J., Ward E.P.W. Com-position-resolved size distributions of volcanic aerosols in the Mt. Etna plumes // J. Geophys. Res. D. 2008. V. 113, N 17. P. 1–17.
18. Symonds R.B., Rose W.I., Bluth G., Gerlach T.M. Vol-canic gas studies: methods, results, and applications // Rev. Mineral. Geochem. 1994. V. 30, N 1. P. 1–66.
19. Zuev V.P., Mihajlov V.V. Proizvodstvo sazhi. M.: Himija, 1965. 328 p.
20. Ivanovskij V.I. Tehnicheskij uglerod. Processy i apparaty: Uchebnoe posobie. Omsk: OAO «Tehuglerod», 2004. 228 p.
21. Orehov V.S., Subocheva M.Ju., Degtjarjov A.A., Trufanov D.N. Himicheskaja tehnologija organicheskih veshhestv: Uchebnoe posobie. Part 4. Tambov: GOU VPO TGTU, 2010. 80 p.
22. URL: http://volcanoes.usgs.gov/
23. Etiope G., Fridriksson T., Italiano F., Winiwarter W., Theloke J. Natural emissions of methane from geothermal and volcanic sources in Europe // J. Volcanol. Geoth. Res. 2007. V. 165, N 1–2. P. 76–86.
24. Basiuk V.A., Navarro-Gonzalez R. Possible role of volcanic ash-gas clouds in the Earth's prebiotic chemistry // Origins Life Evol. B. 1996. V. 26, N 2. P. 173–194.
25. Blake D.F., Kato K. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere // J. Geophys. Res. D. 1995. V. 100, N 4. P. 7195–7202.
26. Petzold A., Döpelheuer A., Brock C.A., Schröder F. In situ observations and model calculations of black carbon emission by aircraft at cruise altitude // J. Geophys. Res. D. 1999. V. 104, N 18. P. 22171–22178.
27. Randel W.J., Wu F., Russell J.M., Waters J.W., Froi-devaux L. Ozone and temperature changes in the stratosphere following the eruption of Pinatubo // J. Geophys. Res. D. 1995. V. 100, N 8. P. 16753–16764.
28. Gobbi G.P., Congeduti F., Adriani A. Early stratospheric effects of the Pinatubo eruption // Geophys. Res. Lett. 1992. V. 19, N 10. P. 997–1000.
29. Hansen J., Lacis A., Ruedy R., Sato M. Potential climate impact of Mount Pinatubo eruption // Geophys. Res. Lett. 1992. V. 19, N 2. P. 215–218.
30. Van der A R.J., Allaart M.A.F., Eskes H.J. Multi Sensor Reanalysis of Total Ozone // Atmos. Chem. Phys. 2010. V. 10, N 22. P. 11277–11294.
31. URL: ftp://ftp.cmdl.noaa.gov/ozwv/Dobson/Balloon/
32. URL: http://www.woudc.org/
33. Grjazin V.I. Vertikal'nyj perenos stratosfernyh ajerozolej v pole vetra: Avtoref. dis. ... kand. fiz.-mat. nauk. Ekaterinburg: Ural. gos. universitet im. A.M. Gor'kogo, 2011. 24 p.
34. Malina K.M. Spravochnik sernokislotchika. M.: Himija, 1971. 744 p.
35. Chazette P., David C., Lefrere J., Gobin S., Pelon J., Megie G. Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric aerosols, following the eruptions of El Chichon and Mount Pinatubo // J. Geophys. Res. D. 1995. V. 100, N 11. P. 23195–23207.

Back