Vol. 27, issue 07, article # 7

Dagurov P.N., Dmitriev A.V., Dymbrylov Zh.B., Radnaeva S.B. Earth's surface brightness temperature measured by the microwave radiometer SMOS, and the problem of soil moisture recovering. // Optika Atmosfery i Okeana. 2014. V. 27. No. 07. P. 605-609 [in Russian].
Copy the reference to clipboard

The angular and polarization dependencies of the brightness temperature measured by the spaceborne radiometer SMOS in L-band on different parts of the earth's surface are shown. It is found that in some cases the results are not described by the existing model for the reflection coefficient of microwaves, which leads to errors in recovering the soil moisture. It is shown by calculation that the layered structure of soil moisture has a significant impact on the behavior of brightness temperature. It is proposed to expand the moisture-recovering algorithm by the method which takes into account possible layered structure of the soil moisture.


microwave sensing, brightness temperature, soil moisture, layered soil


1. Sharkov E.A. Passive microwave remote sensing of the Earth: Physical foundations. Berlin; Heidelberg; N.Y.: Springer, 2003. 613 p.
2. Thermal microwave radiation: Applications for remote sensing / Ed. Mätzler C. London: The Institution of Engineering and Technology, 2006. 555 p.
3. Mironov V.L., Bobrov P.P. Mikrovolnovoe radiometricheskoe zondirovanie pochv // Optika atmosf. i okeana. 2007. T. 20, № 12. С. 1121–1123.
4. Encyclopedia of Hydrological Sciences. Chichester: John Wiley & Sons Ltd, 2005. 3243 p.
5. Kerr Y.H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.-J., Font J., Reul N., Gruhier C., Juglea S.E., Drinkwater M.R., Hahne A., Martin-Neira M., Mecklenburg S. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle // Proc. IEEE. 2010. V. 98, N 5. P. 666–687.
6. Kaleschke L., Tian-Kunze X., Maaß N., Mäkynen M., Drusch M. Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period // Geophys. Res. Lett. 2012. V. 39, N 5. P. L05501.
7. Gherboudj I., Magagi R., Goïta K., Berg A.A., Toth B., Walker A. Validation of SMOS data over agricultural and boreal forest areas in Canada // IEEE Trans. Geosci. Remote Sens. 2012. V. 50, N 5. P. 1623–1635.
8. Leroux D.J., Kerr Y.H., Richaume P., Fieuzal R. Spatial distribution and possible sources of SMOS errors at the global scale // Remote Sens. Environ. 2013. V. 133, N 6. P. 240–250.
9. Mironov V.L., Muzalevskiy K.V., Savin I.V. Retrie-ving temperature gradient in frozen active layer of arctic tundra soils from radiothermal observations in L-band—theoretical modeling // IEEE J. Sel. Top. Appl. 2013. V. 6, N 3. P. 1781–1785.
10. Rowlandson T.L., Hornbuckle B.K., Bramer L.M., Patton J.C., Logsdon S.D. Comparisons of evening and morning SMOS passes over the Midwest United States // IEEE Trans. Geosci. Remote Sens. 2012. V. 50, N 5. P. 1544–1554.
11. Lawrence H., Wigneron J.-P., Richaume P., Novello N., Grant J., Mialon A., Al Bitar A., Merlin O., Guyon D., Leroux D., Bircher S., Kerr Y. Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA // Remote Sens. Environ. 2014. V. 140, N 1. P. 396–406.
12. Romanov A.N., Hvostov I.V., Pavlov V.E., Vinokurov Ju.I. Distancionnyj monitoring zabolochennyh territorij Zapadnoj Sibiri s ispol'zovaniem dannyh sputnika SMOS (ESA) // Optika atmosf. i okeana. 2014. V. 27, N 2. P. 150–153.
13. Bobrov P.P., Mironov V.L., Jashhenko A.S. Osobennosti jarkostnyh harakteristik territorii juga Zapadnoj Sibiri i Severnogo Kazahstana v period tajanija snezhnogo pokrova, izmerjaemyh kosmicheskim apparatom SMOS // Vestn. SibGAU. 2013. N 5(51). P. 16–18.
14. Dagurov P.N., Dmitriev A.V., Bazarov A.V., Radnaeva C.B. Rezul'taty izmerenij radiojarkostnoj temperatury na territorii Burjatii kosmicheskim radiometrom SMOS // Vestn. SibGAU. 2013. № 5(51). С. 22–26.
15. Dagurov P.N., Dmitriev A.V., Nesterov A.S., Radnaeva S.B. Poljarizacionnye i uglovye zavisimosti radiojarkostnoj temperatury po dannym kosmicheskogo radiometra SMOS // Izv. vuz. Fiz. 2013. V. 56, N 8/2. P. 187–190.
16. Daganzo-Eusebio E., Oliva R., Kerr Y.H., Nieto S., Richaume P., Mecklenburg S.M. SMOS Radiometer in the 1400–1427-MHz Passive Band: Impact of the RFI Environment and Approach to its Mitigation and Cancellation // IEEE Trans. Geosci. Remote Sens. 2013. V. 51, N 10. P. 4999–5007.
17. Mironov V.L., Kosolapova L.G., Fomin S.V. Physically and mineralogically based spectroscopic dielectric model for moist soils // IEEE Trans. Geosci. Remote Sens. 2009. V. 47, N 7. P. 2059–2070.
18. Wigneron J.-P., Kerr Y., Waldteufel P., Saleh K., Escorihuela M.-J., Richaume P., Ferrazzoli P., Grant J.P., Hornbuckle B., de Rosnay P., Calvet J.-C., Pellarin T., Gurney R., Mätzler C. L-band microwave emission of the biosphere (L-MEB) model: Results from calibration against experimental data sets over crop fields // Remote Sens. Environ. 2007. V. 107, N 4. P. 639–655.
19. Brehovskih L.M. Volny v sloistyh sredah. M.: Nauka, 1973. 344 p.
20. Hallikainen M.T., Ulaby F.T., Dobson M.C., El-Rayes M.A., Wu L. Microwave Dielectric Behavior of Wet Soil – Part 1: Empirical Models and Experimental Observations // IEEE Trans. Geosci. Remote Sens. 1985. V. 23, N 1. P. 25–34.