Vol. 27, issue 07, article # 4

Malakhov D.V., Islamgulova A.F. The quantitative interpretation of pasture image parameters: an experience of low and moderate spatial resolution remotely sensed data application. // Optika Atmosfery i Okeana. 2014. V. 27. No. 07. P. 587-592 [in Russian].
Copy the reference to clipboard
Abstract:

The application of vegetation indices for the quantitative evaluation of basic pasture parameters (grass-cover, productivity, unpalatable grass, pasture degradation) is discussed for low and moderate resolution optical sensors. Each vegetation index was correlated with ground-truth data. The algorithm of pasture condition estimation was developed using highly correlated indices.

Keywords:

vegetation index, grass-cover, productivity, pasture condition

References:

1. Bunkin A.F., Bunkin F.V. Lidarnoe zondirovanie vodoemov, pochvy i rastitel'nosti // Optika atmosf. i okeana. 2000. V. 13, N 1. P. 63–69.
2. Evtjushkin A.V., Komarov S.A., Luk'janenko D.N., Mironov V.L. Klassifikacija zemnyh pokrovov po radiolokacionnym izobrazhenijam // Optika atmosf. i okeana. 1997. V. 10, N 12. P. 1508–1512.
3. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the Great Plains with ERTS // Third ERTS Symposium. NASA SP-351 I. 1973. P. 309–317.
4. Kauth R.J., Thomas G.S. The Tasseled Cap – A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT // Proc. Sympos. on Machine Proc. of Remote Sens. Data, Purdue University of West Lafayette, Indiana. 1976. P. 4B-41–4B-51.
5. Polevaja geobotanika. M.; L.: Izdatelstvo AN SSSR, 1964. V. 3. 531 p.; 1972. V. 4. P. 137–330.
6. Otchet o NIR po teme: Antropogennaja transformacija rastitel'nosti Kazahstana (zakljuchitel'nyj) / Ruk. N.P. Ogar' i L.V. Shabanova. Almaty, 1996. 257 p.
7. Rachkovskaja E.I., Temirbekov S.S., Sadvokasov R.E. Ispol'zovanie distancionnyh metodov dlja ocenki stepeni antropogennoj transformacii pastbishh // Geobotanicheskoe kartografirovanie. SPb.: BIN RAN, 2000. P. 16–25.
8. Bizhanova G., Kurochkina L.Ja. Antropogennye smeny pastbishh Mojynkumov i ih kartografirovanie. Alma-Ata: Nauka KazSSR, 1989. 164 p.
9. Nurmuhambetova G.D. Indikatornaja rol' sornoj rastitel'nosti v ocenke processov digressii i demutacii v stepnoj zone Kazahstana // Izdenis. Poisk. Ser. estestv. nauk. 2001. N 2. P. 66–73.
10. Bykov B.A. Geobotanika. Alma-Ata: Nauka, 1978. P. 53–59.
11. Larin I.V., Beguchev P.P., Rabotnov T.A., Leont'eva I.P. Lugovodstvo i pastbishhnoe hozjajstvo. L.: Kolos, 1975. 527 p.
12. Akijanova F.Zh., Kurochkina L.Ja. Opustynivanie kak process degradacii zemel'. Almaty: Print-S, 2006. V. 3. P. 197–254.
13. Marynich O.V. Antropogennaja transformacija stepnoj rastitel'nosti (na primere Central'nogo Kazahstana): Avtoref. dis. … kand. biol. nauk. Almaty, 1999. 29 p.
14. Huete A.R. A Soil-Adjusted Vegetation Index (SAVI) // Remote Sens. Environ. 1988. V. 25. P. 295–309.
15. Huete A.R., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices // Remote Sens. Environ. 2002. V. 83, N 1–2. P. 195–213.
16. Baret F., Guyot G., Major D. TSAVI: A vegetation index which minimizes soil brightness effects on LAI or APAR estimation // 12th Canadian Sympos. on Remote Sens. and IGARSS-1990. Vancouver, Canada. 1990. P. 10–14.
17. Richardson A.J., Wiegans C.L. Distinguishing vegetation from soil background information // Photogramm. Eng. Remote Sens. 1977. V. 43. P. 1541–1552.
18. Mjachina K.V., Malahov D.V. Opyt primenenija dannyh distancionnogo zondirovanija srednego prostranstvennogo razreshenija dlja vydelenija ob#ektov neftepromyslov v uslovijah tehnogenno-modificirovannogo landshafta (na primere Orenburgskoj oblasti) // Izv. Samarskogo nauchnogo centra. 2013. V. 15, N 3(7). P. 2341–2345.
19. Fadhil A.M. Land Degradation Detection Using Geo-Information Technology for Some Sites in Iraq // J. Al-Nahrain Univ. 2009. V. 12, N 3. P. 94–108.
20. Liu Y., Zha Y., Gao J., Ni S. Assesment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectral data // Int. J. Remote Sens. 2004. V. 25, N 20. P. 4177–4189.

Back