Vol. 27, issue 06, article # 6

Gruzdev A.N. Estimation of the Pinatubo volcano eruption effect on stratospheric O3 and NO2, taking into account variations of solar activity. // Optika Atmosfery i Okeana. 2014. V. 27. No. 06. P. 506–514 [in Russian].
Copy the reference to clipboard

Effects of the Pinatubo volcano eruption and variations of solar activity on stratospheric O3 and NO2 are estimated, using data of satellite measurements of ozone concentration by SBUV/SBUV-2 instruments and results of ground-based measurements of the column NO2 content in the NDACC. The NO2 decrease related to the Pinatubo eruption is within 19–23% at different stations, the NO2 decrease in the Southern hemisphere (SH) is on the whole something larger than in the Northern hemisphere (NH). The decrease in O3 concentration in the NH extratropical lower stratosphere (~ 10%) is, on the contrary, much larger than in the SH. Maximal decrease in ozone concentration is noted in the neighbourhood of 10 hPa level (32 km) at 10–15°S. The effect of the 11-year solar cycle in stratospheric ozone is approximately symmetrical about the equator. Altitude maxima of the O3 response to the solar cycle are noted at altitudes of 50–55, 35–40, and below 25 km. The changes in O3 concentration in these layers are usually within several percents. Essential interhemispheric difference is noted in the NO2 response to the 11-year solar cycle. The NO2 content at most of SH stations is usually lower during the phase of maximum than during the phase of minimum of solar activity. The NO2 content at the low- and mid-latitude stations of the NH is often larger during a solar activity maximum compared to that during its minimum. NO2 changes related to the solar cycle are usually within 5%.


ozone, NO2, Pinatubo volcano, solar activity


1. Robock A. Volcanic eruptions and climate // Rev. Geophys. 2000. V. 38, N 2. P. 191–219.
2. Johnston P.V., McKenzie R.L., Keys J.G., Matthew W.A. Observations of depleted stratospheric NO2 following the Pinatubo volcanic eruption // Geophys. Res. Lett. 1992. V. 19, N 2. P. 211–213.
3. Chandra S. Changes in stratospheric ozone and temperature due to the eruption of Mt. Pinatubo // Geophys. Res. Lett. 1993. V. 20, N 1. P. 33–36.
4. Hofmann D.J., Oltmans S.J., Komhyr W.D., Harris J.M., Lathrop J.A., Langford A.O., Deshler T., Johnson B.J., Torress A., Matthews W.A. Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol // Geophys. Res. Lett. 1994. V. 21, N 1. P. 65–68.
5. Grant W.B., Browell E.V., Fishman J., Brackett V.J., Veiga R.E., Nganga D., Minga A., Cros B., Butler C.F., Fenn M.A., Long C.S., Stowe L.L. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo // J. Geophys. Res. D. 1994. V. 99, N 4. P. 8197–8211.
6. Rinsland C.P., Gunson M.R., Abrams M.C., Lowes L.L., Zander R., Mahieu E., Goldman A., Ko M.K.W., Rodriguez J.M., Sze N.D. Heterogeneous conversion of N2O5 to HNO3 in the post-Mount Pinatubo eruption stratosphere // J. Geophys. Res. D. 1994. V. 99, N 4. P. 8213–8219.
7. Solomon S., Sanders R.W., Jakoubek R.O., Arpag K.H., Stephens S.L., Keys J.G., Garcia R.R. Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica. 10. Reductions of stratospheric NO2 due to Pinatubo aerosols 1994 // J. Geophys. Res. D. 1994. V. 99, N 2. P. 3509–3516.
8. Elokhov A.S., Gruzdev A.N. Estimation of tropospheric and stratospheric NO2 from spectrometric measurements of column NO2 abundances // Proc. SPIE. 1995. V. 2506. P. 444–454.
9. Di Sarra A., Cacciani M., Fiocco G., Fuà D., Jørgensen T.S., Knudsen B., Larsen N., Mikkelsen I.S. Ozone and aerosol correlated observations at Thule, Greenland, in the period 1991–1994 // J. Geophys. Res. D. 1995. V. 100, N 12. P. 25965–25977.
10. Ansmann A., Wagner F., Wandinger U., Mattis I., Görsdorf U., Dier H.-D., Reichardt I. Pinatubo aerosol and stratospheric ozone reduction: Observations over Central Europe // J. Geophys. Res. D. 1996. V. 101, N 13. P. 18775–18785.
11. Mickley L.J., Abbatt J.P.D., Frederik J.E., Russell J.M., III. Response of summertime odd nitrogen and ozone at 17 mbar to Mount Pinatubo aerosol over the southern midlatitudes: Observations from the Halogen Occultation Experiment // J. Geophys. Res. D. 1997. V. 102, N 19. P. 23573–23582.
12. Van Roozendael M., De Mazière M., Hermans C., Simon P.C., Pommereau J.-P., Goutail F., Tie X.X., Brasseur G., Granier C. Ground-based observations of stratospheric NO2 at high and midlatitudes in Europe after the Mount Pinatubo eruption // J. Geophys. Res. D. 1997. V. 102, N 15. P. 19171–19176.
13. Angell J.K. Impact of El Chichon and Pinatubo on ozonesonde profiles in north extratropics // Geophys. Res. Lett. 1998. V. 25, N 24. P. 4485–4488.
14. De Mazière M., Van Roozendael M., Hermans C., Simon P.C., Demoulin P., Roland G., Zander R. Quantitative evaluation of the post-Mount Pinatubo NO2 reduction and recovery, based on 10 years of Fourier transform infrared and UV-visible spectroscopic measurements at Jungfraujoch // J. Geophys. Res. D. 1998. V. 103, N 9. P. 10849–10858.
15. Liley J.B., Johnston P.V., McKenzie R.L., Thomas A.J., Boyd I.S. Stratospheric NO2 variations from a long time series at Lauder, New Zealand // J. Geophys. Res. D. 2000. V. 105, N 9. P. 11633–11640.
16. Gruzdev A.N. Shirotnaja zavisimost' variacij stratosfernogo soderzhanija NO2 // Izv. RAN. Fiz. atmosf. i okeana. 2008. V. 44, N 3. P. 345–359.
17. Gruzdev A.N. Latitudinal structure of variations and trends in stratospheric NO2 // Int. J. Remote Sens. 2009. V. 30, N 15–16. P. 4227–4246.
18. Koike M., Jones N.B., Matthews W.A., Johnston P.V., McKenzie R.L., Kinnison D., Rodriguez J. Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3 // Geophys. Res. Lett. 1994. V. 21, N 7. P. 597–600.
19. Tie X.X., Brasseur G. The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading // Geophys. Res. Lett. 1995. V. 22, N 22. P. 3035–3038.
20. Gruzdev A.N. Ocenka vlijanija 11-letnego cikla solnechnoj aktivnosti na soderzhanie ozona v stratosfere // Geomagnet. i ajeronom. 2014. V. 54, N 4.
21. Elohov A.S., Gruzdev A.N. Izmerenija obshhego soderzhanija i vertikal'nogo raspredelenija NO2 na Zvenigorodskoj nauchnoj stancii // Izv. RAN. Fiz. atmosf. i okeana. 2000. V. 36, N 6. P. 831–846.
22. Gruzdev A.N., Elokhov A.S. Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia // Int. J. Remote Sens. 2011. V. 32, N 11. P. 3115–3127.
23. Thomason L.W., Poole L.R., Deshler T. A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 // J. Geophys. Res. D. 1997. V. 102, N 7. P. 8967–8976.
24. Bauman J.J., Russell P.B., Geller M.A., Hamill P. A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparison, 1984–1999 // J. Geophys. Res. D. 2003. V. 108, N 13. 4383. DOI: 10.1029/2002JD002993.
25. Aquila V., Oman D., Stolarski R., Douglass A.R., Newman P.A. The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes // J. Atmos. Sci. 2013. V. 70, N 3. P. 894–900.
26. Randel W.J., Wu F., Russell J.M. III, Waters J.W., Froidevaux L. Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo // J. Geophys. Res. D. 1995. V. 100, N 8. P. 16753–16764.
27. Poberaj C.S., Staehelin J., Brunner D. Missing stratospheric ozone decrease at southern hemisphere // J. Atmos. Sci. 2011. V. 68, N 9. P. 1922–1945.
28. Beig G., Saraf N., Peshin S.K. Evidence of the Pinatubo volcanic eruption on the distribution of ozone over the tropical Indian region // J. Geophys. Res. D. 2002. V. 107, N 23. 4674. DOI: 10.1029/2002JD002337.