Vol. 26, issue 08, article # 5

Geints Yu.E., Zemlyanov A.A. Numerical simulations of dark hollow laser beams self-focusing and filamentation in air. // Optika Atmosfery i Okeana. 2013. V. 26. No. 08. P. 647-653 [in Russian].
Copy the reference to clipboard

The problem of nonlinear propagation of intense femtosecond laser pulses in the near-infrared spectral range in air is theoretically considered. By numerically solving of the paraxial propagation equation for optical wave envelope the dynamics of self-focusing and filamentation of dark hollow light beams having a ring-shaped transverse intensity profile are investigated in the conditions of a wide variation of beam initial angular divergence. We found that the filamentation region of such beams in comparison with the Gaussian beam filamentation of equal power is located much father on the optical path, and posseses a significantly greater longitudinal extent, as well as the density of the free-electron laser plasma. By changing the initial angular divergence or the width of the annular region of initial intensity profile it is possible to effectively control the position and length of the filaments on the propagation path.


self-focusing, filamentation, ultra-short laser radiation, profiled beams


1. Yin J.-P., Gao W.-J., Wang H.-F., Long Q., Wang Y.-Z. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose–Einstein condensation // Chin. Phys. 2002. V. 11, N 11. P. 1157–1161.
2. Yin J.-P., Gao W.-J., Zhu Y. Generation of dark hollow beams and their applications // Progress in Optics. V. 44 (E. Wolf, ed., North-Holland, Amsterdam, 2003). P. 119–204.
3. Zhang Y., Ding B., Suyama T. Trapping two types of particles using a double-ring-shaped radially polarized beam // Phys. Rev. A. 2010. V. 81. 023831.
4. Azimov B.S., Platonenko V.T., Sagatov M.M. Ob odnom avtomodel'nom reshenii, voznikajushhem pri samofokusirovke kol'ceobraznyh puchkov // Kvant. jelektron. 1991. V. 18, N 3. P. 323–325.
5. Gejnc Ju.Je., Zemljanov A.A. Zakonomernosti nestacionarnoj samofokusirovki profilirovannyh lazernyh puchkov. Usrednennoe opisanie // Optika i spektroskopija. 2009. V. 107, N 3. P. 461–467.
6. Fibich G., Sivan Y., Ehrlich Y., Louzon E., Fraenkel M., Eisenmann S., Katzir Y., Zigler A. Control of the collapse distance in atmospheric propagation // Opt. Express. 2006. V. 14, N 12. P. 4946–4957.
7. Apeksimov D.V., Gejnc Ju.Je., Zemljanov A.A., Kabanov A.M., Matvienko G.G., Stepanov A.N. Filamentacija negaussovskih lazernyh puchkov s razlichnoj geometricheskoj rashodimost'ju na atmosfernoj trasse // Optika atmosf. i okeana. 2012. V. 25, N 11. P. 929–935.
8. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentacija moshhnogo femtosekundnogo lazernogo izluchenija // Kvant. jelektron. 2009. V. 39, N 3. P. 205–228.
9. Gejnc Ju.Je., Zemljanov A.A., Kabanov A.M., Matvienko G.G. Nelinejnaja femtosekundnaja optika atmosfery / Pod obshhej red. d.f.-m.n., professora A.A. Zemljanova. Tomsk: Izd-vo Instituta optiki atmosfery SO RAN, 2010. 212 p.
10. Geints Yu.E., Kabanov A.M., Zemlyanov A.A., Bykova E.E., Bukin O.A., Golik S.S. Kerr-driven nonlinear refractive index of air at 800 and 400 nm measured through femtosecond laser pulse filamentation // Appl. Phys. Lett. 2011. V. 99, iss. 18. P. 181114.
11. Perelomov A.M., Popov V.S., Terent'ev M.V. Ionizacija atomov v peremennom jelektricheskom pole // Zh. jeksperim. i teor. fiz. 1966. V. 50, iss. 5. P. 1393–1397.
12. Zemljanov A.A., Gejnc Ju.Je. Integral'nye parametry moshhnogo femtosekundnogo lazernogo izluchenija pri filamentacii v vozduhe // Optika atmosf. i okeana. 2005. V. 18, N 7. P. 574–579.
13. Vlasov V.N., Petrishhev V.A., Talanov V.I. Usrednennoe opisanie volnovyh puchkov v linejnyh i nelinejnyh sredah (metod momentov) // Izv. vuzov. Radiofiz. 1971. V. 14, N 9. P. 1353–1363.
14. Gejnc Ju.Je., Zemljanov A.A. Vlijanie prostranstvennoj fokusirovki na harakteristiki filamentacii femtosekundnogo lazernogo izluchenija v vozduhe // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 274–280.