М.П. Анисимов, А.Г. Насибулин, С.Д. Шандаков, И.И. Швец, Л.В. Тимошина

СКЛАДКИ ПОВЕРХНОСТИ СКОРОСТЕЙ НУКЛЕАЦИИ НА ПРИМЕРЕ СИСТЕМЫ *n*-ПЕНТАНОЛ – АРГОН

Впервые изложен топологический подход, позволяющий на новой аксиоматической основе развивать теорию атмосферной нуклеации.

Введение

Во второй половине 60-х годов были начаты активные исследования по применению лазеров для контроля загрязнений атмосферы [1]. Лазер позволил перейти от локальных исследований к дистанционным. Это заложило новую основу для оперативного контроля загрязнений и повышения достоверности прогнозов состояния атмосферы. Развитие диагностической техники в этом направлении привело к значительным успехам [2]. Однако, как показали исследования [2], для построения полноценного прогноза аэрозольного состояния атмосферы необходимо уточнение существующих представлений о конденсации и нуклеации атмосферных паров. Существующие теории этих явлений [3] содержат явные недостатки, хотя история развития представлений о метастабильных состояниях и кинетике образования зародышей стабильной фазы достаточно продолжительная и восходит к началу XVIII в.

«Классическая теория нуклеации»

Как следует из обзора В. Освальда [4], Фаренгейт в 1724 г. опубликовал результаты своих первых наблюдений переохлажденных состояний воды, лишенной растворенного в ней воздуха. Хотя эти эксперименты относятся к замерзанию жидкой воды, они имеют принципиальную значимость для формирования представлений о метастабильных состояниях фаз и законах их перехода в стабильные состояния.

В 1785 г. И. Ловиц повторил эксперименты Освальда, используя ледяную уксусную кислоту. Кроме того, он обнаружил явление переохлаждения в пересыщенных растворах и в результате экспериментов пришел к выводу, что переохлаждение и пересыщение являются общим свойством природы. Уже первые эксперименты Фаренгейта обнаруживали, что присутствие воздуха или пылинок резко сокращает время жизни пересыщенных состояний. Г. Левиль (1850 г.) приписал эти эффекты контактному воздействию неизвестной природы.

Во второй половине XIX столетия было найдено, что воздух содержит микроскопические носители (зародыши) жизни – бактерии и по аналогии это навело на мысль о существовании невидимых частиц неживой материи, которые являются зародышами новой фазы. Лекок де Буабодран (1866 г.) экспериментально установил, что спонтанное образование зародышей происходит лишь при сильном пересыщении, тогда как при слабых пересыщениях система может находиться в неравновесном состоянии продолжительное время.

Образование капелек в паре впервые было исследовано Кулье (1875 г.) при адиабатическом расширении водяного пара в воздухе [5]. Одна из модификаций этой системы, выполненная Вильсоном для ядерных исследований, получила название «камера Вильсона». Первое теоретическое описание процесса образования новой фазы было сделано в 1878 г. Д. У. Гиббсом [6]. Гиббс впервые ввел строгое термодинамическое понятие о критических зародышах новой фазы и заложил основу для формализованного описания скорости нуклеации (числе зародышей новой фазы, образующихся в единице объема за единицу времени).

Однако лишь в 1926 г. Фольмер [7] на этой основе построил собственно теорию образования новых фаз и роста кристаллов. Он ввел понятия о трехмерных и двумерных зародышах новой фазы, связав их флуктуационное возникновение с проблемой скорости зародышеобразования и линейной скорости кристаллизации.

Рассмотрев работу образования зародышей как энергию активации, Фольмер открыл возможность количественного описания зародышей новой фазы и кристаллизации. Затем усилия исследователей были направлены на обоснование кинетики процесса. Для образования капелек это удалось осуществить Л. Фаркашу [8] на основе решения системы уравнений, предложенных Сциллардом. Беккер и Доринг [9] доопределили константы теории Фаркаша. Им удалось обобщить многообразие единичных молекулярных актов, протекающих при построении новой фазы.

Наиболее законченный вид теории нуклеации придали Зельдович [10] и Френкель [11]. Теория в виде, сформулированном этими авторами, стала называться «классической теорией нуклеации». Существенных изменений в классической теории нуклеации не произошло до настоящего времени. В 1950 г. Г. Рисс [12] обобщил классическую теорию для нуклеации бинарного пара. В последнее время стала популярной разновидность классической теории — самосогласованная теория нуклеации [13]. Однако успехи в развитии теории не привели к созданию универсального описания нуклеации, имеющего реальную предсказательную силу. Это приводит к мысли о необходимости поиска новых идей для развития представлений об аэрозолеобразовании в пересыщенном паре.

Связь диаграмм состояния с поверхностями скоростей нуклеации пара

В 1990 г. в [14] предлагалось применить топологический анализ поверхности скоростей нуклеации над простейшей PT-диаграммой с одной тройной точкой, где P и T – соответственно давление и температура системы.

Не останавливаясь на рассмотрении эффектов запаздывания стационарной скорости нуклеации при быстром возникновении пересыщения пара, рассмотрим простейшую диаграмму состояния с тройной точкой t и критической точкой c.

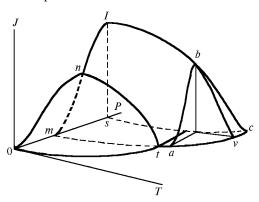


Рис. 1. Поверхность скоростей образования зародышей новой фазы (нуклеации) над простейшей PT-диаграммой

На рис. 1 такая диаграмма показана в плоскости РТ. Штриховая линия cs соответствует условию спинодального распада и ограничивает область достижимых пересыщений пара. В соответствии с теоремой, доказанной в [15], скорость нуклеации в критической точке равна нулю. Лостаточно очевилно, что спинодаль сѕ является проекцией линии максимальных скоростей нуклеации (lbc, см. рис. 1) в пространстве скоростей нуклеации J(P, T). Общеизвестно, что линия равновесия пар – жидкость не оканчивается в тройной точке и имеет продолжение в области твердых (кристаллических) состояний. На линиях фазовых равновесий отсутствуют пересыщенные состояния, и, соответственно, скорость образования зародышей новой фазы равна нулю [15]. Отсюда следует, что поверхность скоростей нуклеации жидкости натягивается на линии нулевой (mtc) и максимальной (lbc) скоростей. Температуры ниже тройной точки соответствуют образованию метастабильной жидкости (образуются стекла). Поверхность скоростей нуклеации кристаллов натягивается на контур 0nt, что качественно верно отражает экспериментальный факт: при относительно малых пересыщениях паров возникают аэрозоли с правильной кристаллической структурой. Превышение некоторого порогового пересыщения приводит к образованию стекол [16]. Даже из этого простейшего случая следует, что поверхность скоростей нуклеации многолистна (в приведенном случае состоит из двух поверхностей). В общем случае многокомпонентной системы с множеством линий фазовых равновесий,

соответствующих фазовым переходам первого рода, возникает соответствующее множество поверхностей скорости нуклеации.

В [17] нами были рассмотрены некоторые поверхности скоростей нуклеации для растворимых и ограниченно растворимых бинарных систем.

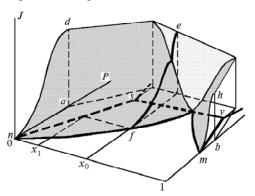


Рис. 2. Поверхность скоростей нуклеации для бинарной системы с эвтектической точкой

На рис. 2 в пространстве J(P,x), где x — состав, приводится поверхность скоростей для бинарной системы с эвтектической точкой. Бинарные системы могут иметь несколько эвтектических и перитектических точек, что, как легко понять, приводит к дальнейшему усложнению топологии поверхности скоростей нуклеации. Рассечение, в общем случае многолистных поверхностей (например, при фиксированной температуре нуклеации), должно приводить к изломам и даже к скачкам на изотерме скорости нуклеации. Этот результат не следует из современной теории нуклеации.

Экспериментальные результаты

Для экспериментальной проверки результатов нашего качественного рассмотрения топологии поверхности скоростей нуклеации была использована система *п*-пентанол – аргон. Спирт был выбран в связи с тем, что он имеет более низкое, по сравнению с водой, давление насыщенных паров, что значительно облегчает эксперимент. Следует отметить, что вода формально входит в гомологический ряд спиртов и закономерности, найденные для спиртов, могут оказаться верными и для нуклеации паров воды.

Эксперимент проводился в рамках международного эксперимента по интеркалибровке результатов по нуклеации, получаемых различными методами в ведущих лабораториях мира. Для экспериментов использован образец *n*-пентанола «из одной бутылки» для всех участников интеркалибровки, представленный доктором Рейнхардом Штреем из Биофизического института им. Макса Планка (Геттинген, Германия).

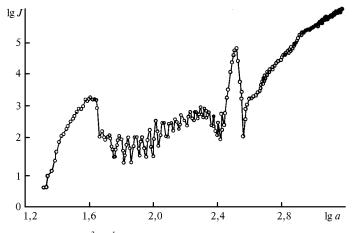


Рис. 3. Скорость нуклеации $(J, \text{ cm}^{-3} \cdot \text{c}^{-1})$ в системе n-пентанол – аргон от активности a паров n-пентанола

Эксперимент проводился в поточной диффузионной камере нашей конструкции [17]. На рис. 3 приведена зависимость скорости нуклеации J от химической активности a паров n-пентанола в атмосфере аргона. За величину активности принимается отношение парциального давления n-пентанола к равновесному при температуре нуклеации. Эксперимент проводился при давлении нуклеирующей системы 0,20 МПа и температуре нуклеации $-11,9^{\circ}$ С. Экспериментальные значения концентрации аэрозольных частиц (C, см $^{-3}$) в зависимости от температуры насыщения аргона (t, $^{\circ}$ С) парами n-пентанола приведены в табл. 1. Температура стенки холодного термостата аэрозольного генератора была равной $-15,1^{\circ}$ С.

 $\label{eq:Tadinu} {\rm Tadinu}\,{\rm Lad}$ Зависимость C(t) для n-пентанола в аргоне при давлении 0,2 МПа и температурах: нуклеации –11,9 °C, холодильника –15,1 °C

t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C
33,66	0,329	56,26	1,814	79,51	1,881	103,37	4,426	128,55	5,579
34,14	0,359	56,70	1,845	79,96	1,795	103,95	4,443	129,21	5,608
34,44	0,694	57,11	1,470	80,55	2,185	104,48	4,483	130,08	5,600
35,34	0,831	57,48	1,234	80,92	1,613	104,91	4,537	130,60	5,564
36,13	1,117	57,78	1,674	81,39	1,929	105,24	4,554	131,00	5,604
36,61	1,434	58,23	1,833	81,85	2,450	105,67	4,567	131,62	5,614
37,16	1,717	58,86	1,454	82,28	2,063	106,21	4,593	132,16	5,631
37,78	1,895	59,35	1,185	82,70	2,473	106,62	4,642	132,54	5,661
38,30	1,982	59,63	1,701	83,29	2,932	107,01	4,649	133,13	5,662
38,98	2,121	60,20	2,039	83,91	3,177	107,41	4,661	133,79	5,633
39,71	2,222	60,68	1,490	84,51	3,670	107,75	4,696	134,34	5,574
40,32	2,350	61,07	1,189	85,11	3,972	108,10	4,703	135,00	5,555
40,86	2,441	61,42	1,754	85,36	4,199	108,52	4,734	135,57	5,597
41,29	2,549	61,90	2,292	85,86	4,358	108,84	4,753	136,10	5,613
41,79	2,640	62,30	1,965	86,31	4,430	109,25	4,785	136,53	5,586
42,30	2,719	62,61	1,518	86,86	4,030	109,55	4,804	137,13	5,601
42,82	2,732	63,18	1,831	87,32	3,395	109,84	4,835	137,59	5,616
43,42	2,816	63,68	2,215	87,81	3,082	110,44	4,855	138,00	5,631
43,92	3,052	64,19	2,229	88,00	2,877	110,81	4,870	138,81	5,624
44,32	2,989	64,73	1,795	88,40	1,702	111,52	4,886	139,33	5,636
44,83	3,050	65,18	1,765	89,12	2,236	111,86	4,901	139,58	5,612
45,17	3,086	65,60	2,191	89,53	2,547	112,08	4,929	139,82	5,629
45,72	3,025	66,28	2,228	89,88	2,683	112,50	4,944	140,23	5,633
46,16	3,044	66,70	1,959	90,33	2,847	113,20	4,930	140,75	5,665
46,54	3,014	66,95	1,976	90,71	2,863	113,69	4,997	141,13	5,678
46,82	2,732	67,34	2,309	91,18	2,877	113,96	5,030	141,47	5,679
47,35	1,839	67,71	2,242	91,48	2,915	114,25	5,040	142,08	5,610
47,95	2,019	68,34	2,041	91,79	2,920	114,56	5,042	142,62	5,596
48,46	1,850	68,69	2,148	92,21	2,951	114,91	5,083	143,06	5,640
48,69	1,773	69,18	2,448	92,57	2,983	115,41	5,092	143,63	5,649
48,95	1,827	70,00	2,260	92,90	3,006	116,14	5,031	144,04	5,645
49,28	1,852	70,61	2,109	93,48	3,582	116,68	5,126	144,42	5,642
49,63	1,896	71,12	2,362	94,06	3,678	117,31	5,144	144,83	5,619
49,84	1,804	71,73	2,549	94,40	3,659	117,99	5,187	145,19	5,628
50,15	1,553	72,29	2,326	94,80	3,709	118,39	5,219	145,59	5,627
50,42	1,444	72,69	2,254	95,30	3,765	118,97	5,235	145,88	5,638
50,80	1,219	73,24	2,522	95,72	3,782	119,42	5,263	146,19	5,648
51,06	1,247	73,79	2,514	96,14	3,830	119,94	5,289	146,61	5,653
51,27	1,470	74,34	2,318	96,43	3,840	120,56	5,298	147,11	5,646
51,51	1,603	74,68	2,443	96,77	3,833	121,13	5,335	147,60	5,657
51,87	1,743	75,09	2,667	97,43	3,885	121,78	5,354	147,98	5,656
52,25	1,865	75,39	2,430	97,95	3,929	122,38	5,375	148,44	5,657
52,72	1,780	75,87	2,351	98,50	3,981	122,97	5,416	148,94	5,691
53,15	1,424	76,33	2,609	99,13	4,021	123,56	5,443	149,42	5,695
53,39	1,038	76,69	2,533	99,55	4,094	124,31	5,460	_	_
53,64	1,253	77,01	2,317	99,98	4,154	125,04	5,491	_	_
54,15	1,577	77,33	2,404	100,80	4,179	125,60	5,508	_	_
54,64	1,825	77,83	2,499	101,52	4,250	126,30	5,524	_	_
54,96	1,491	78,30	2,097	101,96	4,271	127,00	5,548	-	_
55,33	1,031	78,82	2,066	102,65	4,347	127,55	5,555	-	-
55,83	1,525	79,22	2,356	102,92	4,378	128,08	5,573	_	_

Ввиду принципиальной новизны полученного результата по нуклеации паров n-пентанола в атмосфере аргона были измерены скорости нуклеации n-пентанола в гелии (He) и шестифтористой сере (SF₆). Результаты приведены на рис. 4 и 5 соответственно. Экспериментальные значения концентраций от температур насыщения парами n-пентанола в атмосфере гелия и шестифтористой серы приведены в табл. 2 и 3. Эксперименты в этих газах проведены при том же давлении 0,20 МПа. Температуры нуклеации были близкими к температуре нуклеации в аргоне, а именно – в гелиевой среде –12,5 °C, в шестифтористой сере –11,8 °C, что соответствовало температурам стенки холодильника (–14,0 и –20,0 °C).

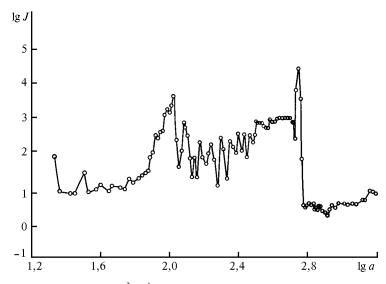


Рис. 4. Скорость нуклеации $(J, \, \mathrm{cm}^{-3} \cdot \mathrm{c}^{-1})$ в системе n-пентанол – гелий от активности a паров n-пентанола

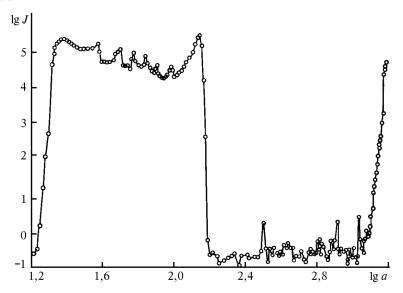


Рис. 5. Скорость нуклеации $(J, \operatorname{cm}^{-3} \cdot \operatorname{c}^{-1})$ в системе n-пентанол – шестифтористая сера от активности a паров n-пентанола

При расчетах были использованы следующие значения величин для n-пентанола: молекулярная масса M = 88,150 г/моль; критические давление, температура, плотность и объем соответственно равны: $P_c = 38,97$ бар; $T_c = 588,1$ K; $\rho_c = 0,270$ г/см³; $V_c = 326$ см³/моль [18].

Теплопроводность газов получена аппроксимацией табличных значений из работы [19] следующим полиномом:

$$\chi = T^{1,75} (aP + b) + (P^2 c + Pd + e) [B_T \cdot K^{-1} \cdot M^{-1}].$$

Экспериментальные значения концентрации аэрозоля $(C, \text{ cm}^{-3})$ от температуры насыщения $(t, {}^{\circ}\text{C})$ парами n-пентанола в гелии при давлении 0,2 МПа. Температуры: холодного термостата $-14,0\,{}^{\circ}\text{C}$, нуклеации $-12,5\,{}^{\circ}\text{C}$

t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C
31,77	1,491	56,39	2,701	72,64	1,556	88,44	2,410	102,79	0,094
32,71	0,500	56,89	2,914	73,44	2,113	88,87	2,371	104,77	0,091
34,86	0,441	57,47	3,217	74,26	1,598	89,18	1,925	105,79	0,050
35,79	0,440	57,91	1,950	74,87	2,084	89,72	3,331	107,56	0,083
37,81	1,031	58,46	1,165	75,63	1,437	90,40	3,923	108,55	0,079
38,44	0,473	59,23	1,637	76,57	2,061	90,89	3,053	110,90	0,188
40,25	0,564	59,72	2,430	77,43	1,842	91,33	1,376	111,67	0,194
41,05	0,696	59,97	2,293	77,81	2,063	91,76	0,050	113,56	0,447
42,79	0,531	60,38	2,042	78,31	2,430	92,03	0,024	114,41	0,409
43,55	0,662	60,68	2,065	78,96	2,395	92,70	0,045	116,10	0,359
45,33	0,608	61,13	1,426	79,64	2,398	93,41	0,110	116,92	0,486
46,09	0,539	61,68	0,884	80,28	2,315	93,62	0,106	118,66	0,460
47,28	0,864	62,10	1,448	80,95	2,252	94,05	0,066	119,60	0,604
47,92	0,750	62,86	0,862	81,45	2,262	94,71	0,091	120,84	0,518
49,31	0,854	63,63	1,887	82,10	2,498	95,14	0,085	121,47	0,578
49,95	0,947	64,28	1,447	82,81	2,411	95,41	0,040	122,75	0,511
50,70	1,023	64,97	1,244	83,29	2,441	95,69	0,062	123,35	0,459
51,38	1,055	65,59	1,558	84,19	2,525	96,11	0,090	124,72	0,599
51,85	1,455	66,34	1,798	84,73	2,578	96,55	0,045	125,70	0,622
52,42	1,583	67,16	1,399	85,04	2,523	96,97	0,028	126,56	0,659
53,10	2,070	68,06	0,627	85,70	2,539	97,49	0,096	127,57	0,716
53,61	1,992	68,84	1,994	86,39	2,541	98,52	0,168	128,50	0,673
54,23	2,162	69,52	1,666	86,70	2,550	99,11	0,255	130,53	0,583
54,75	2,182	70,39	0,840	87,04	2,470	99,74	0,056	131,42	0,600
55,26	2,638	71,21	1,907	87,48	2,527	100,62	0,036	_	_
55,83	2,798	72,00	1,718	87,89	2,527	101,61	0,024	_	_

Таблица 3

Зависимость C(t) для нуклеации n-пентанола в шестифтористой сере при давлении 0,2 МПа, температуре нуклеации –11,8 °C. Температура стенки холодильника –20,0 °C

t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C	t,°C	lg C
1	2	3	4	5	6	7	8	9	10
30,13	-0,301	73,62	5,025	103,75	5,353	151,88	-0,507	188,46	1,330
33,16	-0,310	74,45	5,072	104,43	4,411	152,72	-0,611	189,20	1,533
35,63	-0,410	75,01	5,243	105,31	2,839	153,64	-0,574	189,79	1,776
37,05	-0,507	75,65	5,299	106,22	-0,014	154,64	-0,255	190,31	1,992
39,75	-0,410	76,36	5,357	107,11	-0,435	155,32	-0,522	190,84	2,204
40,91	-0,507	77,13	4,917	107,88	-0,397	155,89	-0,183	191,31	2,326
43,61	-0,539	77,67	4,900	109,49	-0,477	156,47	-0,632	191,64	2,454
44,66	-0,410	78,42	4,904	110,28	-0,675	156,94	-0,341	192,06	2,538
46,97	-0,363	79,00	4,814	112,39	-0,611	157,83	-0,410	192,48	2,903
48,70	-0,213	79,36	4,829	113,74	-0,539	159,43	-0,675	193,33	3,153
49,69	-0,330	79,84	5,072	115,32	-0,477	160,00	-0,808	193,85	4,251
50,80	-0,255	80,36	5,261	116,36	-0,422	161,30	-0,539	193,97	4,248
51,71	-0,141	80,99	5,024	118,06	-0,808	161,80	-0,255	194,54	4,278
52,60	0,519	82,03	4,899	119,04	-0,491	162,91	-0,507	195,17	4,368
53,51	1,556	82,89	4,851	121,43	-0,477	163,65	-0,282	195,67	4,451
54,23	2,403	83,56	4,889	122,21	-0,592	165,39	0,244	196,02	4,507
54,97	3,085	84,03	5,143	124,60	-0,556	165,97	-0,522	196,52	4,557
55,88	4,969	84,76	4,934	125,69	-0,592	166,62	-0,653	196,97	4,725
56,64	5,274	85,58	4,803	127,80	-0,435	167,31	-0,507	197,46	4,754
57,34	5,463	86,01	4,720	128,78	0,348	168,91	-0,574	197,89	4,754
58,09	5,556	86,97	4,692	129,83	-0,341	169,67	-0,539	198,21	4,769
58,80	5,640	87,71	4,767	130,68	-0,750	171,34	-1,000	198,75	4,805
59,49	5,667	88,24	4,862	131,46	-0,363	171,79	-0,723	199,13	4,889
59,91	5,667	88,81	4,619	132,40	-0,556	172,40	-0,556	199,57	4,924
60,47	5,653	89,35	4,580	133,32	-0,341	173,19	-0,750	200,26	4,923
61,18	5,606	89,96	4,537	133,88	-0,912	174,09	-0,491	200,98	4,972
61,81	5,562	90,61	4,508	134,66	-0,491	175,07	-1,176	201,19	4,966

1	2	3	4	5	6	7	8	9	10
62,31	5,498	91,18	4,552	135,49	-0,556	175,69	-0,750	201,58	5,002
62,79	5,459	91,83	4,609	136,45	-0,477	176,36	-0,954	202,26	5,026
63,25	5,464	92,59	4,724	137,26	-0,539	176,95	-0,750	202,87	5,057
63,84	5,442	93,23	4,825	137,83	-0,282	177,74	0,340	203,18	5,029
64,42	5,389	93,48	4,715	139,23	-0,374	178,53	-0,282	203,90	5,011
64,94	5,426	94,10	4,543	139,94	-0,229	179,52	-0,522	204,98	5,083
65,59	5,401	94,28	4,553	141,30	-0,386	180,66	-0,653	205,79	5,106
66,24	5,398	94,86	4,578	141,82	-0,386	181,40	-0,320	206,46	5,140
67,25	5,409	95,59	4,646	142,89	-0,723	182,09	-0,291	207,11	5,190
67,83	5,418	96,61	4,710	143,54	-0,611	183,08	-0,056	207,25	5,216
69,06	5,529	97,26	4,806	145,28	-0,632	183,80	-0,221	_	_
69,69	5,318	98,29	4,927	145,83	-0,491	184,26	-0,134	_	_
70,41	5,025	99,49	5,045	147,55	-0,723	185,11	0,041	_	_
71,00	5,038	00,54	5,170	148,23	-0,808	185,77	0,344	_	_
71,73	5,009	01,46	5,395	149,88	-0,539	186,43	0,534	_	_
72,49	4,995	02,40	5,599	150,68	-0,435	187,31	0,973	_	_
72,99	4,956	03,19	5,647	151,13	-0,611	187,98	1,150	_	_

Константы аппроксимации приведены в табл. 4.

Таблица 4

Газ	а	b	С	d	e
He	0	9,9323e-2	0	0	2,6025e-6
Ar	-1,4016e-9	3,5861e-7	-2,3030e-7	7,8761e-5	9,7923e-3
SF_6	-1,3454e-8	5,4658e-7	0	4,6048e-4	9,1314e-4

Коэффициенты диффузии в бинарных газовых системах найдены в соответствии с корреляцией Фуллера, Шлеттера и Педингса [20] и аппроксимированы формулой

$$D = K T^{1,75}/P,$$

где коэффициент K для систем n-пентанол — газ соответственно равен: 1,3476е—5 для гелия; 3,5830е—6 для аргона и 1,7015е—6 для SF₆.

Давление насыщенных паров для n-пентанола определялось по формуле

$$P = \exp(A + B/T + C \ln(T))$$
 133 [Πa],

где A = 90,08; B = 9788; C = -9,90 [21].

Обсуждение

Из рис. 3 видно, что зависимость скорости нуклеации от активности паров имеет нетрадиционный вид. Кривая в двойных логарифмических координатах кроме обычного для таких экспериментов плавного, чуть выпуклого подъема имеет резкое падение и острый пик. Такое поведение воспринимается как подтверждение нашего качественного вывода о многолистности поверхности скоростей нуклеации.

Между падением и пиком скорости аэрозолеобразования наблюдаются колебания скорости нуклеации. Колебания напоминают известные в химии колебания Белоусова — Жаботинского и, видимо, являются следствием бистабильности, возникающей при переходе с одной поверхности нуклеации на другую. Измерения в гелии и шестифтористой сере имеют сходный характер. Нам не удалось в гелии обнаружить второй подъем, как в SF_6 , в области достижимых параметров.

Следует отметить, что в экспериментальной практике наблюдались подобные проявления, но «запрет» классической теории нуклеации приводил исследователей к поискам «экспериментальных ошибок» или неполному представлению экспериментальных данных.

Из нашего рассмотрения следуют нетривиальные выводы. Поверхности скоростей нуклеации «растут» из диаграмм состояния. Однако известно, что масштабные преобразования (скейлинг) для диаграмм состояния в общем виде еще не созданы. Это означает, что надежда создать универсальную теорию нуклеации с молекулярно-кинетической позиции беспочвенна до тех пор, пока нет строгого молекулярно-кинетического обоснования фазовых диаграмм. До

той поры остаются перспективными лишь эмпирические определения фазовых диаграмм с последующим построением поверхности скоростей по экспериментально определенным реперным значениям скоростей нуклеации. Для некоторых классов систем возможно создание компьютерных полуэмпирических аппроксимаций. В итоге нашего анализа надолго теряется надежда построить универсальную теорию нуклеации, но открывается не простой, но понятный топологической путь развития теории нуклеации.

Выводы

На сегодняшний день для описания атмосферной нуклеации необходимы эмпирические определения диаграмм состояния соответствующих парогазовых систем. Диаграммы температура – давление для воды и температура – состав для некоторых бинарных систем с водой уже существуют. Однако необходимые для топологического подхода диаграммы давление - состав для бинарных систем нуждаются в уточнении. Лабораторные эксперименты, число которых при новом подходе сокращается на порядки, позволят нормировать шкалы скоростей нуклеации. В настоящее время этот путь представляется единственно верным для успешного развития представлений о гомогенной и гетерогенной нуклеациях в атмосфере.

Авторы благодарят РФФИ за грант 94-03-09947 и доктора Рейнхарда Штрея за предоставление образца *п*-пентанола.

```
1.\,Z\,u\,e\,v\,V . E . , \,K\,a\,b\,a\,n\,o\,v\,M . V . , \,S\,a\,b\,e\,l\,e\,v\,B . A . // Appl. Optics. 1969. V . 8. N. 1. P. 137–141. 2 . 3 у е в \,B . E . , \,K\,p\,e\,\kappa\,o\,B\, \,\Gamma . \,M . Оптические модели атмосферы. Новосибирск: Наука, 1988. 250 с.
```

- 3. А м е л и н А . Г . Теоретические основы образования тумана при конденсации пара. М.: Химия, 1972. 304 с.
- 4. O s v a l d V . Lehrbuch der Allgemeinen Chemie. Leipzig, 1896–1902. 230 c. 5. A i t k e n V . // Trans. Soc. Edinb. 1880. V. 30. P. 337–345.
- 6. G i b b s J . W . // Amer. J. Sci. And Arts. 1878. V. XVI. P. 454–457.
- 7. Volmer M., Weber A. // Z. Physik. Chem. 1926. Bd 119. S. 277–282.
- 8. Farkas L. // Z. Physik. Chem. 1927. B. 125. S. 236–242.
- 9. Becker R., Doring W. // Ann. Physik. 1921. B. 7. S. 13-17.
- 10. 3 ельдович Я.Б. // ЖЭТФ. 1942. Т. 12. С. 525-538.
- 11. Френкель Я. И. Кинетическая теория жидкостей. Л: Наука, 1975. 592 с.
- 12. Reiss H. // J. Chem. Phys. 1950. V. 18. P. 840-848.
- 13. Wilemski G. // J. Chem. Phys. 1995. V. 103 (3). P. 1119-1126.
- $14.\,A\,n\,i\,s\,i\,m\,o\,v\quad M\,.\,P\,.\quad /\!/\,J.\,\,Aerosol\,Sci.\,\,1990.\,\,V.\,\,21.\,\,Suppl.\,\,1.\,\,P.\,\,23-26.$
- 15. An is i mov M.P. // Aerosols Their Generation, Behaviour and Applications. Norwich, the University of East Anglia. 1995. S. 201-206.
- 16. A n i s i m o v M. P. // Nucleation and Atmospheric Aerosols. (K. Fukuta and P.E. Wagner, Eds). Pergamon Press. 1992. Virginia. P. 451-455.
- 17. Анисимов М.П., Насибулин А.Г., Шандаков С.Д., Гордиенок Н.И.// Оптика атмосферы и океана. 1996. T. 9. N 6. C. 872-880.
- 18. G u d e M., T e j a A.S. // J. Chem. Eng. Data 1995. V. 40. P. 1025–1036.
- 19. Варгафтик Н.В., Филиппов Л.П., Тармазинов А.А., Тоцкий Е.Е. Справочник по теплопроводности жидкостей и газов. М.: Энергоатомиздат, 1990. 708 с.
- 20. Р и д Р., Праусниц Д., Шервуд Т. Свойства газов и жидкостей. Л.: Химия, 1982. 592 с.
- 21. Strey R. and T. Schmeling // Ber. Bunsen-Ges. Phys. Chem. 1983. B. 87. S. 323.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 15 июля 1996 г.

M.P. Anisimov, A.G. Nasibulin, S.D. Shandakov, I.I. Shvets, L.V. Timoshina. Nucleation Rates Convolute by the Example of «n-Pentanol-Argon» System.

The topological approach is described for the first time, which allows a development of the atmospheric nucleation theory on new axiomatic base.