СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УДК 535.343

А.А. Адаменков, Ю.Н. Булкин, Ю.В. Колобянин, Е.А. Кудряшов

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТОВ ПОГЛОЩЕНИЯ NH₃ И SO₂ НА ЛИНИЯХ ГЕНЕРАЦИИ СО,-ЛАЗЕРА

Приводится описание экспериментального автоматизированного стенда для исследования поглощения атмосферных примесей. Определены коэффициенты поглощения аммиака и диоксида серы на наиболее сильно поглощаемых линиях генерации СО₂-лазера. Показано, что на двух линиях секвенциальной полосы (00021–10011) поглощение аммиака достаточно для практического использования.

1. Введение

Аммиак (NH₃) и диоксид серы (SO₂) являются одними из наиболее распространенных примесей, загрязняющих атмосферу. Эти газы сопутствуют промышленному производству и играют большую роль в образовании кислотных дождей. Поэтому особую актуальность приобретает непрерывный контроль за содержанием NH₃ и SO₂ в атмосфере. Одним из наиболее чувствительных методов, позволяющих определять концентрации вредных примесей на уровне предельно допустимых (ПДК) и ниже, является лазерный метод [1]. Подходящим инструментом для этой цели является перестраиваемый в диапазоне длин волн 9–11 мкм CO₂лазер, излучение которого поглощается как NH₃, так и SO₂. Измерение концентраций этих примесей при зондировании атмосферы CO₂-лазером требует знания коэффициентов поглощения NH₃ и SO₂ на различных длинах волн.

Круг работ по исследованию поглощения излучения CO₂-лазера аммиаком достаточно широк (см., например, [2, 3, 4]). В приведенных работах разброс экспериментальных значений коэффициентов поглощения на отдельных линиях генерации CO₂-лазера достигает 30%. В связи с этим представляется актуальным проведение дополнительных экспериментов с целью совершенствования базы данных по поглощению аммиаком в области 9–11 мкм. Отметим, что к настоящему времени все измерения коэффициентов поглощения NH₃ проводились на линиях традиционных полос генерации CO₂-лазера (00011–10001, 00011–10002).

Вместе с тем практический интерес представляет исследование поглощения NH_3 на линиях секвенциальных полос (00021–10011 и 00021–10012), поскольку на этих линиях поглощение атмосферного CO_2 почти на два порядка меньше, чем в области традиционных полос генерации CO_2 -лазера. Экспериментальное исследование поглощения SO_2 было проведено лишь в работе [3], в которой были получены коэффициенты поглощения практически чистого SO_2 на линиях излучения 9R(8) - 9R(30) традиционной полосы (00011–10002) генерации CO_2 -лазера. Для целей газоанализа такая информация, по-видимому, недостаточна, т.к. уширение спектральных линий SO_2 основными компонентами атмосферы N_2 и O_2 может отличаться от уширения собственно SO_2 .

В настоящей статье приведены экспериментальные значения коэффициентов поглощения смесей NH₃ с N₂ и SO₂ с N₂ на наиболее сильно поглощаемых линиях как традиционных (00011–10001, 00011–10002), так и секвенциальной (00021–10011) полос генерации CO₂-лазера.

2. Экспериментальная установка и методика измерений

Исследование коэффициентов поглощения NH₃ И SO₂ проводилось на специализированном стенде (рисунок). В качестве источника излучения использовался стабилизированный по частоте и мощности генерации автоматизированный перестраиваемый СО,-лазер 1, работающий как в традиционных, так и в нетрадиционных областях спектра (в частности, на линиях секвенциальных полос). Отличительной особенностью этого лазера являлась возможность перестройки по линиям генерации с помощью персонального компьютера по специально разработанной программе. На выходе лазера луч расщеплялся делительной полупрозрачной пластиной 2 из NaCl на два – опорный и зондирующий. Опорный луч направлялся на панорамный спектрограф 3 для контроля длины волны излучения. Панорамный спектрограф представлял собой оптическую систему, состоящую из сферических зеркал, дифракционной решетки и термоэкрана. Зондирующий луч при помощи зеркального модулятора 4, вращавшегося с частотой $\simeq 10$ Гц, в первый полупериод вращения направлялся на измеритель мощности входного сигнала 5, а во второй полупериод проходил через измерительную кювету 7 и попадал на измеритель мощности выходного сигнала 6. В качестве измерителей мощности использовались пироэлектрические приемники ПМ-4, которые регистрировали излучение от специальных рассеивателей. Это позволило повысить точность измерений при небольших флуктуациях диаграммы направленности лазерного излучения, связанных с поворотом дифракционной решетки. Сигналы с пироэлектрических датчиков усиливались до уровня ≈ 5 В и с помощью 12-разрядного АЦП 8 подавались в персональный компьютер 9 для дальнейшей обработки. В качестве измерительной кюветы использовалась стеклянная трубка длиной 150 см и внутренним диаметром 3 см с торцевыми окнами из NaCl. Вакуумный пост 10 позволял откачивать кювету до давления $\simeq 10^{-4}$ атм и заполнять исследуемой смесью с точностью 10-3 атм. Все измерения проводились при атмосферном давлении. Температура газа принималась равной температуре стенки кюветы и измерялась термометром 11 с ценой деления шкалы 0,1 К. Во время проведения измерений температура стенки составляла 291,3°К.

Для исследования поглощения аммиака использовалась смесь, содержавшая $(1,8 \pm 0,1) \times 10^{-2}$ % NH₃ и чистый N₂. Для исследования поглощения SO₂ использовалась стандартизованная поверочная смесь, содержавшая $(10,0 \pm 0,2)$ % SO₂ и чистый N₂, изготовленная Киевским институтом аналитического приборостроения.

Методика измерений заключалась в следующем. Первоначально для калибровки кювета заполнялась особо чистым азотом до давления 1 атм. Заполнение кюветы проводилось через многослойный сетчатый фильтр с размером ячейки \approx 3 мкм, что позволяло очистить газ от возможных мелкодисперсных частиц и, следовательно, уменьшить рассеяние излучения при прохождении через кювету. Калибровка заключалась в том, что на заранее выбранных линиях генерации CO₂-лазера определялось отношение входного и выходного сигналов в кювете A_{1j} , которое записывалось в базу данных персонального компьютера. После калибровки кювета откачивалась, заполнялась исследуемой смесью и на тех же линиях генерации записывалось отношение входного сигналов A_{2j} . Величина коэффициента поглощения K_j определялась следующим выражением:

Адаменков А.А., Булкин Ю.Н., Колобянин Ю.В., Кудряшов Е.А.

550

$$K_{j} = (1 / PL) \ln(A_{1j} / A_{2j}), \tag{1}$$

где j – индекс соответствующей линии генерации CO₂-лазера; P – парциальное давление исследуемого газа; L – длина кюветы. За исключением операций откачки и заполнения газом кюветы весь процесс измерения (включая перестройку лазера с линии на линию) был автоматизирован. Полученные значения коэффициентов поглощения выводились на дисплей персонального компьютера. Ошибка измерений определялась по результатам 10 серий экспериментов по стандартной методике [5].

3. Результаты измерений

Результаты измерений коэффициентов поглощения NH_3 и SO_2 приведены соответственно в табл. 1 и 2 вместе с экспериментальными данными из работ [2, 3, 4]. Как следует из представленных в табл. 1 результатов, полученные на традиционных линиях генерации значения коэффициентов поглощения NH_3 в пределах точности измерений хорошо согласуются с данными из других работ. Лишь для линии 9R(30) величина коэффициента поглощения 73,1 атм⁻¹·см⁻¹ превышает аналогичные значения из [2, 4] примерно на 20%, однако она практически совпадает с расчетным значением 72,2 атм⁻¹·см⁻¹, приведенным в [6]. Отметим, что в настоящей статье, по-видимому, впервые проведено исследование поглощения аммиака на линиях 10 *PS*(31) и 10 *PS*(33) секвенциальной полосы (00021–10011) генерации CO_2 -лазера. Величина коэффициента поглощения оказалась равной соответственно 30,2 и 17,0 атм⁻¹·см⁻¹. Если учесть, что поглощение излучения в спектре секвенциальной полосы (00021–10011) атмосферным CO_2 почти на два порядка меньше, чем в спектре традиционных полос, линии 10 *PS*(31) и 10 *PS*(33) представляют практический интерес для дистанционного зондирования атмосферы.

Таблица 1

	Частота,	Линия	K, (атм ⁻¹ ·см ⁻¹)				
	cm^{-1}	СО2-лазера	[2]	[3]	[4]	Настоящая работа	
	929,8285	10PS*(33)	-	-	-	$17,0 \pm 1,2$	
	931,0014	10P(34)	_	13,4	14,0	$13,7 \pm 1,1$	
	931,7562	10 <i>PS</i> (31)	_	-	-	$30,2 \pm 2,1$	
	932,9604	10P(32)	13,0	15,8	13,7	$13,9 \pm 1,1$	
	964,7689	10 <i>R</i> (4)	_	-	11,0	$9,6 \pm 1,0$	
	966,2503	10 <i>R</i> (6)	_	32,5	26,3	$25,4 \pm 1,6$	
	967,7072	10 <i>R</i> (8)	-	25,8	20,5	$21,4 \pm 1,5$	
	1075,9878	9 <i>R</i> (16)	-	13,3	11,2	$13,2 \pm 1,1$	
	1084,6351	9 <i>R</i> (30)	60,0	_	56,2	73,1 ± 5,2	
*S—линии секвенциальной полосы (00021 – 100011).							

Экспериментальные данные по коэффициентам поглощения NH, для линий генерации СО,-лазера

Как видно из результатов, приведенных в табл. 2, полученные значения коэффициентов поглощения SO₂ для линий генерации 9R(8) и 9R(30) хорошо согласуются с данными из [3]. Это позволяет предположить, что уширение спектральных линий SO₂ собственно SO₂ и N₂ близко, т.к. в [3], в отличие от настоящей работы, исследовалась смесь, содержавшая 95% SO₂ и 5% N₂. Приведенные в табл. 2 экспериментальные значения коэффициентов поглощения SO₂ на далеких линиях 9R(32) - 9R(42) генерации CO₂-лазера превышают величину 0,1 атм⁻¹·см⁻¹. Максимальное значение коэффициента поглощения, равное 0,149 атм⁻¹·см⁻¹, получено на линии 9R(40). Эта величина на 40% превышает аналогичное значение на обычно используемой в измерениях линии 9R(26), что указывает на возможность практического использования линии 9R(40) для дистанционного зондирования атмосферы.

Экспериментальные данные по коэффициентам поглощения SO, для линий генерации CO₂-лазера

Частота, см ⁻¹	Линия CO ₂ -лазера	К, (атм ⁻¹ ·см ⁻¹)			
	-	[3]	Настоящая работа		
1069,0141	9 <i>R</i> (6)	_	$0,039 \pm 0,004$		
1070,4623	9 <i>R</i> (8)	0,036	$0,041 \pm 0,004$		
1071,8838	9 <i>R</i> (10)	0,044	$0,036 \pm 0,004$		
1073,2785	9R(12)	0,048	$0,045 \pm 0,004$		
1074,6465	9 <i>R</i> (14)	0,054	$0,052 \pm 0,004$		
1075,9878	9 <i>R</i> (16)	0,056	$0,056 \pm 0,004$		
1077,3025	9 <i>R</i> (18)	0,068	$0,066 \pm 0,004$		
1078,5906	9R(20)	0,088	$0,077 \pm 0,004$		
1079,8523	9R(22)	0,072	$0,073 \pm 0,004$		
1081,0874	9 <i>R</i> (24)	0,090	$0,087 \pm 0,005$		
1082,2962	9 <i>R</i> (26)	0,105	$0,109 \pm 0,005$		
1083,4787	9R(28)	0,092	$0,103 \pm 0,005$		
1084,6351	9R(30)	0,110	$0,114 \pm 0,005$		
1085,7564	9R(32)	_	$0,110 \pm 0,005$		
1086,8697	9 <i>R</i> (34)	_	$0,107 \pm 0,005$		
1087,9483	9R(36)	-	$0,127 \pm 0,005$		
1089,0011	9 <i>R</i> (38)	-	$0,143 \pm 0,006$		
1090,0283	9 <i>R</i> (40)	-	$0,149 \pm 0,006$		
1091,0301	9 <i>R</i> (42)	_	$0,131 \pm 0,005$		

4. Заключение

В настоящей статье описан экспериментальный автоматизированный стенд, управляемый персональным компьютером. Стенд позволяет оперативно и с высокой точностью проводить исследование поглощения атмосферных примесей как в традиционных, так и в нетрадиционных областях спектра генерации CO_2 -лазера. Для иллюстрации возможностей стенда проведено определение коэффициентов поглощения NH₃ и SO₂ на наиболее сильно поглощаемых линиях генерации CO_2 -лазера. Полученные значения коэффициентов поглощения NH₃ и SO₂ на традиционных линиях излучения в пределах точности измерений согласуются с данными других работ.

Показано, что для аммиака в секвенциальной полосе (00021–10011) генерации CO_2 -лазера существуют линии (10 *PS*(31) и 10 *PS*(33)), поглощение на которых достаточно велико. Эти линии представляют практический интерес для измерения концентрации NH_3 в присутствии атмосферного CO_2 . Полученные экспериментальные значения коэффициентов поглощения SO_2 на далеких линиях 9R(36) - 9R(42) традиционной полосы (00011–10002) генерации CO_2 -лазера превышают значение коэффициента поглощения на обычно используемой линии 9R(26).

6. Войцеховская О.К., Кузнецов С.В., Сапожников С.В., Трифонова Н.Н., Черкасов М.Р.//Оптика атмосферы. 1991. Т. 4. N 9. С. 938-953.

Российский федеральный ядерный центр – ВНИИЭФ

Поступила в редакцию 31 мая 1994 г.

A.A. Adamenkov, Ju.N. Bulkin, Ju.V. Kolobyanin, E.A. Kudryashov. Measurements of NH₃ and SO₂ Absorption Coefficients at CO₂-Laser Wavelengths.

This paper presents a description of automatized test stand used for investigations of absorption coefficients of atmospheric pollutant gases. The absorption coefficients of ammonia and sulphur dioxide were measured at the most absorbable CO_2 -laser wavelengths. It is shown that two wavelengths of sequential band (00021–10011) are suitable for ammonia measuring.

Адаменков А.А., Булкин Ю.Н., Колобянин Ю.В., Кудряшов Е.А.

^{1.} Meyer P.L. and Sigrist M.W. // Rev. Sci. Instrum. 1990. V. 61. N 7. P. 1779–1807.

^{2.} Force A.P., Killinger D.K., DeFeo W.E., and Menyuk N. // Appl. Optics. 1985. V. 24. N 17. P. 2837-2841.

^{3.} Mayer A., Comera J., Charpentier H., and Jaussaud C. // Appl. Optics. 1978. V. 17. N 3. P. 391-393.

^{4.} Brewer R.J. and Bruce C.W. // Appl. Optics. 1978. V. 17. N 23. P. 3746–3749.

^{5.} Тейлор Дж. Введение в теорию ошибок. М.: Мир, 1985. 272 с.