СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УЛК 535.343

А.А. Адаменков, Ю.Н. Булкин, Ю.В. Колобянин, Е.А. Кудряшов

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТОВ ПОГЛОЩЕНИЯ NH, И ${ m SO_2}$ НА ЛИНИЯХ ГЕНЕРАЦИИ ${ m CO_7}$ -ЛАЗЕРА

Приводится описание экспериментального автоматизированного стенда для исследования поглощения атмосферных примесей. Определены коэффициенты поглощения аммиака и диоксида серы на наиболее сильно поглощаемых линиях генерации ${\rm CO_2}$ -лазера. Показано, что на двух линиях секвенциальной полосы (00021–10011) поглощение аммиака достаточно для практического использования.

1. Введение

Аммиак (NH_3) и диоксид серы (SO_2) являются одними из наиболее распространенных примесей, загрязняющих атмосферу. Эти газы сопутствуют промышленному производству и играют большую роль в образовании кислотных дождей. Поэтому особую актуальность приобретает непрерывный контроль за содержанием NH_3 и SO_2 в атмосфере. Одним из наиболее чувствительных методов, позволяющих определять концентрации вредных примесей на уровне предельно допустимых (Π ДК) и ниже, является лазерный метод [1]. Подходящим инструментом для этой цели является перестраиваемый в диапазоне длин волн 9–11 мкм CO_2 -лазер, излучение которого поглощается как NH_3 , так и SO_2 . Измерение концентраций этих примесей при зондировании атмосферы CO_2 -лазером требует знания коэффициентов поглощения NH_3 и SO_2 на различных длинах волн.

Круг работ по исследованию поглощения излучения CO_2 -лазера аммиаком достаточно широк (см., например, [2, 3, 4]). В приведенных работах разброс экспериментальных значений коэффициентов поглощения на отдельных линиях генерации CO_2 -лазера достигает 30%. В связи с этим представляется актуальным проведение дополнительных экспериментов с целью совершенствования базы данных по поглощению аммиаком в области 9–11 мкм. Отметим, что к настоящему времени все измерения коэффициентов поглощения NH_3 проводились на линиях традиционных полос генерации CO_2 -лазера (00011–10001, 00011–10002).

Вместе с тем практический интерес представляет исследование поглощения NH_3 на линиях секвенциальных полос (00021–10011 и 00021–10012), поскольку на этих линиях поглощение атмосферного CO_2 почти на два порядка меньше, чем в области традиционных полос генерации CO_2 -лазера. Экспериментальное исследование поглощения SO_2 было проведено лишь в работе [3], в которой были получены коэффициенты поглощения практически чистого SO_2 на линиях излучения 9R(8)-9R(30) традиционной полосы (00011–10002) генерации CO_2 -лазера. Для целей газоанализа такая информация, по-видимому, недостаточна, т.к. уширение спектральных линий SO_2 основными компонентами атмосферы N_2 и O_2 может отличаться от уширения собственно SO_2 .

В настоящей статье приведены экспериментальные значения коэффициентов поглощения смесей NH_3 с N_2 и SO_2 с N_2 на наиболее сильно поглощаемых линиях как традиционных (00011–10001, 00011–10002), так и секвенциальной (00021–10011) полос генерации CO_2 -лазера.

2. Экспериментальная установка и методика измерений

Исследование коэффициентов поглощения NH₃ SO, специализированном стенде (рисунок). В качестве источника излучения использовался стабилизированный по частоте и мощности генерации автоматизированный перестраиваемый СО,-лазер І, работающий как в традиционных, так и в нетрадиционных областях спектра (в частности, на линиях секвенциальных полос). Отличительной особенностью этого лазера являлась возможность перестройки по линиям генерации с помощью персонального компьютера по специально разработанной программе. На выходе лазера луч расщеплялся делительной полупрозрачной пластиной 2 из NaCl на два – опорный и зондирующий. Опорный луч направлялся на панорамный спектрограф 3 для контроля длины волны излучения. Панорамный спектрограф представлял собой оптическую систему, состоящую из сферических зеркал, дифракционной решетки и термоэкрана. Зондирующий луч при помощи зеркального модулятора 4, вращавшегося с частотой $\simeq 10~\Gamma$ ц, в первый полупериод вращения направлялся на измеритель мощности входного сигнала 5, а во второй полупериод проходил через измерительную кювету 7 и попадал на измеритель мощности выходного сигнала 6. В качестве измерителей мощности использовались пироэлектрические приемники ПМ-4, которые регистрировали излучение от специальных рассеивателей. Это позволило повысить точность измерений при небольших флуктуациях диаграммы направленности лазерного излучения, связанных с поворотом дифракционной решетки. Сигналы с пироэлектрических датчиков усиливались до уровня ≈ 5 В и с помощью 12-разрядного АЦП 8 подавались в персональный компьютер 9 для дальнейшей обработки. В качестве измерительной кюветы использовалась стеклянная трубка длиной 150 см и внутренним диаметром 3 см с торцевыми окнами из NaCl. Вакуумный пост 10 позволял откачивать кювету до давления $\simeq 10^{-4}$ атм и заполнять исследуемой смесью с точностью 10-3 атм. Все измерения проводились при атмосферном давлении. Температура газа принималась равной температуре стенки кюветы и измерялась термометром 11 с ценой деления шкалы 0,1 К. Во время проведения измерений температура стенки составляла 291,3°К.

Для исследования поглощения аммиака использовалась смесь, содержавшая $(1,8\pm0,1)\times10^{-2}~\%~NH_3$ и чистый N_2 . Для исследования поглощения SO_2 использовалась стандартизованная поверочная смесь, содержавшая $(10,0\pm0,2)~\%~SO_2$ и чистый N_2 , изготовленная Киевским институтом аналитического приборостроения.

Методика измерений заключалась в следующем. Первоначально для калибровки кювета заполнялась особо чистым азотом до давления 1 атм. Заполнение кюветы проводилось через многослойный сетчатый фильтр с размером ячейки $\simeq 3$ мкм, что позволяло очистить газ от возможных мелкодисперсных частиц и, следовательно, уменьшить рассеяние излучения при прохождении через кювету. Калибровка заключалась в том, что на заранее выбранных линиях генерации CO_2 -лазера определялось отношение входного и выходного сигналов в кювете A_{1j} , которое записывалось в базу данных персонального компьютера. После калибровки кювета откачивалась, заполнялась исследуемой смесью и на тех же линиях генерации записывалось отношение входного и выходного сигналов A_{2j} . Величина коэффициента поглощения K_j определялась следующим выражением:

$$K_{j} = (1 / P L) \ln(A_{1j} / A_{2j}),$$
 (1)

где j — индекс соответствующей линии генерации CO_2 -лазера; P — парциальное давление исследуемого газа; L — длина кюветы. За исключением операций откачки и заполнения газом кюветы весь процесс измерения (включая перестройку лазера с линии на линию) был автоматизирован. Полученные значения коэффициентов поглощения выводились на дисплей персонального компьютера. Ошибка измерений определялась по результатам 10 серий экспериментов по стандартной методике [5].

3. Результаты измерений

Результаты измерений коэффициентов поглощения NH_3 и SO_2 приведены соответственно в табл. 1 и 2 вместе с экспериментальными данными из работ [2, 3, 4]. Как следует из представленных в табл. 1 результатов, полученные на традиционных линиях генерации значения коэффициентов поглощения NH_3 в пределах точности измерений хорошо согласуются с данными из других работ. Лишь для линии 9R(30) величина коэффициента поглощения 73,1 атм $^{-1}$ ·см $^{-1}$ превышает аналогичные значения из [2, 4] примерно на 20%, однако она практически совпадает с расчетным значением 72,2 атм $^{-1}$ ·см $^{-1}$, приведенным в [6]. Отметим, что в настоящей статье, по-видимому, впервые проведено исследование поглощения аммиака на линиях 10 PS(31) и 10 PS(33) секвенциальной полосы (00021-10011) генерации CO_2 -лазера. Величина коэффициента поглощения оказалась равной соответственно 30,2 и 17,0 атм $^{-1}$ ·см $^{-1}$. Если учесть, что поглощение излучения в спектре секвенциальной полосы (00021-10011) атмосферным CO_2 почти на два порядка меньше, чем в спектре традиционных полос, линии 10 PS(31) и 10 PS(33) представляют практический интерес для дистанционного зондирования атмосферы.

Таблица 1 Экспериментальные данные по коэффициентам поглощения NH₃ для линий генерации CO₂-лазера

Частота,	Линия	K, (atm ⁻¹ ·cm ⁻¹)			
cm^{-1}	CO ₂ -лазера	[2]	[3]	[4]	Настоящая работа
929,8285	10PS*(33)	_	_	_	$17,0 \pm 1,2$
931,0014	10P(34)	-	13,4	14,0	$13,7 \pm 1,1$
931,7562	10PS(31)	_	_	_	$30,2 \pm 2,1$
932,9604	10P(32)	13,0	15,8	13,7	$13,9 \pm 1,1$
964,7689	10R(4)	_	_	11,0	$9,6 \pm 1,0$
966,2503	10R(6)	_	32,5	26,3	$25,4 \pm 1,6$
967,7072	10R(8)	_	25,8	20,5	$21,4 \pm 1,5$
1075,9878	9R(16)	-	13,3	11,2	$13,2 \pm 1,1$
1084,6351	9R(30)	60,0	-	56,2	$73,1 \pm 5,2$

^{*}S — линии секвенциальной полосы (00021 — 100011).

Как видно из результатов, приведенных в табл. 2, полученные значения коэффициентов поглощения SO_2 для линий генерации 9R(8) и 9R(30) хорошо согласуются с данными из [3]. Это позволяет предположить, что уширение спектральных линий SO_2 собственно SO_2 и N_2 близко, т.к. в [3], в отличие от настоящей работы, исследовалась смесь, содержавшая 95% SO_2 и 5% N_2 . Приведенные в табл. 2 экспериментальные значения коэффициентов поглощения SO_2 на далеких линиях 9R(32) - 9R(42) генерации CO_2 -лазера превышают величину 0,1 атм⁻¹·см⁻¹. Максимальное значение коэффициента поглощения, равное 0,149 атм⁻¹·см⁻¹, получено на линии 9R(40). Эта величина на 40% превышает аналогичное значение на обычно используемой в измерениях линии 9R(26), что указывает на возможность практического использования линии 9R(40) для дистанционного зондирования атмосферы.

Частота, см⁻¹ Линия СО₂-лазера K, (атм⁻¹·см⁻¹) [3] Настоящая работа 1069,0141 9R(6) 0.039 ± 0.004 1070,4623 9R(8)0.036 $0,041 \pm 0,004$ 1071,8838 9R(10)0,044 0.036 ± 0.004 0,048 1073,2785 9R(12) $0,045 \pm 0,004$ 1074,6465 9R(14)0,054 0.052 ± 0.004 1075 9878 9R(16)0.056 $0,056 \pm 0,004$ 1077,3025 9R(18)0,068 0.066 ± 0.004 1078,5906 9R(20)0,088 0.077 ± 0.004 1079.8523 9R(22)0,072 0.073 ± 0.004 1081.0874 9R(24)0.090 $0,087 \pm 0,005$ 1082,2962 9R(26)0,105 $0,109 \pm 0,005$ 9R(28)0,092 1083,4787 $0,103 \pm 0,005$ 1084,6351 9R(30)0,110 0.114 ± 0.005 1085,7564 9R(32) $0,110 \pm 0,005$ 9R(34) 1086.8697 0.107 ± 0.005 1087,9483 9R(36) $0,127 \pm 0,005$ 1089,0011 9R(38) 0.143 ± 0.006 1090,0283 9R(40) $0,149 \pm 0,006$ 1091,0301 9R(42) $0,131 \pm 0,005$

4. Заключение

В настоящей статье описан экспериментальный автоматизированный стенд, управляемый персональным компьютером. Стенд позволяет оперативно и с высокой точностью проводить исследование поглощения атмосферных примесей как в традиционных, так и в нетрадиционных областях спектра генерации CO_2 -лазера. Для иллюстрации возможностей стенда проведено определение коэффициентов поглощения NH_3 и SO_2 на наиболее сильно поглощаемых линиях генерации CO_2 -лазера. Полученные значения коэффициентов поглощения NH_3 и SO_2 на традиционных линиях излучения в пределах точности измерений согласуются с данными других работ.

Показано, что для аммиака в секвенциальной полосе (00021-10011) генерации CO_2 -лазера существуют линии (10PS(31) и 10PS(33)), поглощение на которых достаточно велико. Эти линии представляют практический интерес для измерения концентрации NH_3 в присутствии атмосферного CO_2 . Полученные экспериментальные значения коэффициентов поглощения SO_2 на далеких линиях 9R(36) - 9R(42) традиционной полосы (00011-10002) генерации CO_2 -лазера превышают значение коэффициента поглощения на обычно используемой линии 9R(26).

- 1. Meyer P.L. and Sigrist M.W. // Rev. Sci. Instrum. 1990. V. 61. N 7. P. 1779–1807.
- 2. Force A.P., Killinger D.K., DeFeo W.E., and Menyuk N. // Appl. Optics. 1985. V. 24. N 17. P 2837-2841
- 3. Mayer A., Comera J., Charpentier H., and Jaussaud C. // Appl. Optics. 1978. V. 17. N 3. P. 391-393.
- 4. Brewer R.J. and Bruce C.W. // Appl. Optics. 1978. V. 17. N 23. P. 3746-3749.
- 5. Тейлор Дж. Введение в теорию ошибок. М.: Мир, 1985. 272 с.
- 6. Войцеховская О.К., Кузнецов С.В., Сапожников С.В., Трифонова Н.Н., Черкасов М.Р.//Оптика атмосферы. 1991. Т. 4. N 9. C. 938—953.

Российский федеральный ядерный центр – ВНИИЭФ

Поступила в редакцию 31 мая 1994 г.

A.A. Adamenkov, Ju.N. Bulkin, Ju.V. Kolobyanin, E.A. Kudryashov. Measurements of NH₃ and SO₂ Absorption Coefficients at CO₂-Laser Wavelengths.

This paper presents a description of automatized test stand used for investigations of absorption coefficients of atmospheric pollutant gases. The absorption coefficients of ammonia and sulphur dioxide were measured at the most absorbable CO_2 -laser wavelengths. It is shown that two wavelengths of sequential band (00021–10011) are suitable for ammonia measuring.